I obtained my first degree in Materials Science from Indian Institute of Technology, Kharagpur (India) and PhD on Raman Spectroscopy of Carbon Nanostructures from University of Cambridge (UK).

 In 2003 I joined Prof. Sir Mark Welland’s Group in Nanoscience Centre, Cambridge (UK) and developed a prototype super-resolution Raman spectroscopy and imaging system in reflection mode.

 In 2005, I joined the National Physical Laboratory to establish a technical area on Analytical and Optical Nanoprobes to develop measurement science to position the UK for emerging bio nanotechnologies. During this period, I received several awards for best papers, initiated the international standardization for Raman spectroscopy and started the international conference on tip-enhanced Raman spectroscopy. I have regularly given invited talks in international scientific conferences as well as industrial meetings.

 In 2017 I joined Swansea University to build research activities on laser analytics and nanoscience. Areas of interest includes nanobiotechnology, advanced materials and sensors. 

Areas of Expertise

  • Raman Spectroscopy
  • Tip-enhanced Raman Spectroscopy
  • Graphene and 2D Materials
  • Coherent Raman Imaging of Biological Systems
  • Sensors and Digital Molecular Diagnostics

Publications

  1. & Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nature Communications 8, 14670
  2. & Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale. Nanoscale 9(8), 2723-2731.
  3. & Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. Physical Chemistry Chemical Physics 18(19), 13710-13716.
  4. & Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale 8(20), 10564-10569.
  5. & Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chemical Communications 52(53), 8227-8230.

See more...

Teaching

  • CH-124 Structure and Bonding 2

    Building on Structure and Bonding 1 (CH-123), this will extend the theoretical underpinning for atomic and molecular structure and will address more advanced examples from organic and inorganic chemistry as well as macroscopic systems. The content of this module will require knowledge developed in prior modules as well as independent reading outside scheduled sessions. The module will have a variety of formative assessment opportunities and summative assessments that include writing of technical reports, a presentation, homework, workshops, and an exam.

  • CH-127 Chemical Practice

    This module will introduce students to the three broad employment areas for chemistry: research, teaching or industrial positions. The lecture portion will cover fundamental aspects of being a professional chemist including safety, report writing, project management, and teaching skills. Students will then spend 60 hours with research faculty, on an industrial field trip or serving as a teacher's aide. Assessment will be by coursework, continuing reports on their project, and a final oral and written report.

  • CH-241 Analytical Chemistry

    This course will cover theory and applications of qualitative and quantitative analytical chemistry, with particular emphasis on quantitative chemical analysis. The students will learn about various processes and measurements involved in a chemical analysis, and about statistical analyses of the data acquired during such experiments. The topics related to both classic (e.g., titrations) and modern analytical techniques (e.g., separations and spectroscopy) will be covered. The module will have a variety of formative assessment opportunities and summative assessments that include writing of technical reports, a presentation, homework, workshops, and an exam.

  • CH-349 Integrated Topics in Chemistry

    This module gives students the opportunity to explore options within Chemistry, giving opportunity to apply prior learning to advanced research topics and allowing students to pursue more specialised topics related to their research interests and aligned with the research areas represented within the Department. Study areas available will include advanced spectroscopic techniques, the application of instrumentation in chemistry, as well as more advanced synthetic pathways and a return to more integrated study of the traditional branches of organic/inorganic/physical chemistry. Classes will be supported with workshops which will help students gain a thorough understanding of the integrated nature of Chemistry at an advanced level. Where possible, topics will be taught using relevant examples from primary literature, encouraging students to evaluate and appraise a range of primary literature sources and locate appropriate new sources. The module is designed to be flexible to allow the content to vary with the research areas represented within the Department.

Supervision

  • Improving vibrational spectroscopy prospects in frontline clinical diagnosis. (current)

    Student name:
    PhD
    Other supervisor: Prof Catherine Thornton