-
PM-153
Epigenetics, Gene Regulation and Disease
.Epigenetics and its role in gene expression.
-
PM-163
Population Genomics and Clinical Applications
Population genomics is the study of genetic variation within populations and involves the examination of changes in the frequency of alleles and genotypes across space and time. Concepts such as natural selection, genetic drift, gene pool, genetic diversity, migration, and environmental diversity all contribute to creating genetic diversity within sub populations. Students will be taught these key concepts along with the real-life sub population examples where genotype variation has led to the diversity in genetics. Such as, the prevalence of disease in the specific populations, the evolution of genetically distinct populations and the genomics behind genetic diversity in sport. This module will take you across the world in multidisciplinary topics and show how genomics is weaved throughout, to create the strengths, weakness, and purely, what makes us who we are.
-
PM-273
Advances in Toxicology: Pick Your Poison
We are surrounded by substances that may do our bodies harm i.e. poisons. The harm these poisons causes depends on our exposure - the dose. The science of toxicology, a discipline that crosscuts biology, chemistry, pharmacology, and medicine, is based on the principle that the dose makes the poison.
This module is compulsory for BSc Medical Pharmacology students and acts as a follow on from PM-147 Introduction to Toxicology: The Dose Makes the Poison.
This module will provide students with the opportunity to expand their toxicology knowledge and apply it to three distinct fields within toxicology; analytical toxicology, forensic toxicology and clinical toxicology.
Students will learn about the experimental procedures and techniques we employ for the isolation and detection of compounds as well as their effects on biological systems. Students will then learn about the role of employing these methods in the field of forensic toxicology and the role of toxicology within the legal system.
Within the module, students will also learn about the role of clinical toxicology and patient presentation following poisoning events and the techniques we have for detection and treatment of toxicology within the clinical setting.
-
PM-300
Medical Genetics
The course is designed to provide an advanced study of the identification of human genes and the determination of the influence of human genes upon disease and health status. Gene identification provides targets for the development of new pharmaceuticals and the range of variation present in the population.
-
PM-344
Capstone Project
The aim of this module is to provide a capstone experience to students¿ learning, through participating in their own enquiry-based research project, with guidance from an academic supervisor. The project may be laboratory or non-laboratory based, but it will always involve a research question that is drawn from the literature, and focused on a topic relevant to the life sciences. It will ask a research question and involve the critical analysis of research findings. Students will refine their oral and written communication skills to a graduate level through an oral presentation and dissertation on their research findings and conclusions.
-
PM-358
Tissue Engineering and Regenerative Medicine
This module will provide students with a firm understanding of the principles of Regenerative Medicine that extend from cellular to tissue and organ repair and regeneration.
This module will focus on the practical aspects of revolutionary technologies, generated through research, that have the potential to significantly improve how we treat injury, illness and disease.
-
PMLM22
Laboratory Measurement Techniques for Medical Sciences
This module will enable students to understand the basic and advanced concepts of laboratory and measurement techniques used in medical sciences, how they may be applied with relevant methods of detection, gain `hands on¿ problem solving experience and strategic method development for complete bioanalysis according to target molecule characteristics and method application.
-
PMNM11
Nanomedicines, pharmaceuticals and advanced therapeutics
This module will explore the history and development of molecular medicines and pharmaceuticals, providing the basis for an advanced understanding of next generation therapeutic approaches. Using landmark technology and chemical development phases informed by separation science and mass spectrometry, the module uses an application driven approach to provide the student with an extensive knowledgebase of drug development, the pharmaceutical industry and nanotherapeutics.
Students will be able to characterize and map the path of a drug from administration, to metabolism and elimination, and critically evaluate drug design and delivery approaches. Traditional small chemical entities used in molecular medicine will be outlined, using drugs such as taxols and tamoxifen as exemplars. Common target oncology and non-oncology disorders will provide the context; with students encouraged to explore targeted nanoparticle fabrication, drug encapsulation and release profiling, from early first generation drugs such as Abraxane to second generation biologically targeted SMART delivery systems. Future molecular medicines such as antibody drug conjugates and kinase inhibitors will be taught by guest lectures from industry and clinicians, covering the spectrum of drug development to delivery and clinical considerations.
-
PMNMD0
Postgraduate Taught Masters Dissertation
In this module the student will be able to gain extensive specialist expertise in a chosen topic which could be targeted to their future career in the field of nanomedicine.
Students will be supervised by University academics and/or members of their research and innovation teams. A variety of project types are available that include:
1. Laboratory based experimental research and data analysis (dependant on laboratory access and capacity).
2. Analysis of experimental data originating from the project supervisor¿s laboratory*
3. Meta-analysis of publicly available experimental data*
4. Systematic analysis of publicly available reported data*
*potentially linking with Swansea¿s data health science or clinical trials unit.
Working with a dedicated academic supervisor students will develop a clear research question, experimental plan and derive, analyse and present research data.
The research topic choice will be made in conjunction with the supervisor, based upon novelty, feasibility and practical considerations on a 'first come first served' basis. The final approval of the topic rests with the project supervisor.
The module lead and academic tutor will provide additional support available throughout the module period.
A series of information sessions and engagement events such as the 3 Minute Thesis and employability for an innovative and integral part of this module.
A small number of placement opportunities may arise with external academic and industry partners. These opportunities will be highlighted early in the first semester, with placements, in the event of high demand, based on student academic performance.
-
PMP401
Emerging Therapies and Complex Patients
In this module, students will focus on the broader definition of health, advanced therapies and the complexities of patient care.
The module will continue to build on the foundational-science-based knowledge and clinical skills developed in Years 1 to 3, and will delve deeper into population health, future medicines, and complex clinical scenarios.
This module encourages further development of transferable skills and application of prior knowledge into progressively complex scenarios. This learning will be supported by robust contextualisation of science into pharmacy practice and working with other healthcare professionals (interprofessional education) through multi-disciplinary teaching & learning.