1. & Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters
  2. & Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard. Journal of Glaciology 63(237), 106-117.
  3. & Generating synthetic fjord bathymetry for coastal Greenland. The Cryosphere 11(1), 363-380.
  4. & Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters 44(2), 910-918.
  5. & Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries. Annals of Glaciology 57(73), 79-86.

See more...


  • GEG344 Glaciology

    This module will provide you with the scientific basis to understand the physical behaviour of glacier ice at spatial scales ranging from individual ice crystals to continental-scale glaciation. The module core topics will include glacier mass balance, transformation of snow to ice, glacier hydrology, dynamics, ice crystal structure and deformation, glacier sliding, deformation of glacial sediments, glacier flow instabilities and glacier surging. We will then introduce example topics of current research interest. You will have the opportunity to work in a small group on a guided research project. The module is assessed through an individual paper critique and ¿take-home¿ examination, as well as group presentation of your research project results at a poster-based mini-conference, and as a report. The research project work will normally be assigned a group mark, however, individual student¿s marks may be moderated based on self and peer assessment.

  • GEG347 Meteorology and Atmospheric Science

    This module provides a comprehensive introduction to meteorology, weather, and atmospheric science. The emphasis is on the applied aspect of meteorology. However, as understanding of these is based on physical concepts, an excellent mathematical qualification (GCSE level) and physical background is a pre-requisite for a student attending this module. The module focuses on short timescales ranging from daily to seasonal. Meteorology is introduced as the study of weather and related phenomena. Methods of measuring the atmosphere and the interpretation of these measurements are fundamental to the subject, as are classifications and qualitative descriptions of atmospheric phenomena. The fundamental physics of the atmosphere (motion, moisture and radiation) are discussed. The central part of the module focuses on weather systems, both in the tropics and the mid-latitudes. Finally, the module covers small-scale phenomena (e.g. tornadoes), and boundary-layer processes. Weather forecasting is a theme which runs through the module, as much of the research in meteorology has been motivated by the desire to predict the weather. The relationship between measurements, models and forecasts is explored.