Variations in Gay Pay in the USA and in the UK

G. Reza Arabsheibani
(University of Wales, Swansea)

Alan Marin
(London School of Economics)

Jonathan Wadsworth
(Royal Holloway College University of London and Centre for Economic Performance at the London School of Economics and IZA Bonn)
1. Introduction

The small, but growing, literature on the economics of discrimination according to sexual orientation has tended to find that, in general, while gay men earn less than heterosexual men, lesbian women earn more than heterosexual women. This pattern appears to hold, broadly, in the United States, (Clain and Leppel (2001), Black, Makar, Sanders and Taylor (2003))¹, the Netherlands (Plug and Berkhout (2004)) and in the United Kingdom (Arabsheibani, Marin and Wadsworth (2005)). These aggregate findings suggest that gay men may suffer from labor market discrimination more than Lesbian women. However we do not know how readily these findings apply to all members of the gay and Lesbian population and, as such, how well any explanatory framework applies to all members of the minority population. One way to begin to address these issues is to examine how any pay differences between heterosexuals and lesbians and gay men, (hereafter LG), vary across different sectors of the economy, an issue of which we currently know little. It is common, for example, to examine the size of the gender or ethnic minority pay gaps across age groups, in different regions or in different jobs² with a view to help target any remedial policy more effectively. In what follows we apply a similar strategy to the analysis of LG pay gaps in both Britain and the United States, decomposing the population by factors known to be associated with different wages or working conditions, such as age, education or region, in an attempt to discover to what extent the aggregate findings outlined above apply across the population.

Both countries now have in place some form of legislation aimed at outlawing discrimination by sexual orientation. In the United States, the process of protection against employment-related discrimination for gay men and lesbians began in New York city more than thirty years ago and has proceeded since then along a combination of federal, state and local levels (Klawitter and Flatt (1998). Federal policy currently outlaws discrimination in federal jobs. Several states and
the District of Columbia also outlaw discrimination by sexual orientation in the public sector and private sectors. In the UK, discrimination by sexual orientation was outlawed across the country, in both public and private sectors, on 1st November 2003, in line with practice elsewhere in the European Union.

There are few theoretical models in the literature which look explicitly at discrimination against homosexuals. We do not know how readily models of discrimination used in the gender and ethnic minority literatures apply to discrimination by sexual orientation or whether different explanations of these events are required. Black, Makar, Sanders and Taylor, (2003), point out that in the context of existing discrimination models, the taste for discrimination may be different when concerned with sexual orientation and that the size of the LG population relative to the number of non-discriminatory employers will have an effect on wage and employment rates. As with religion or political affiliation, firms may not directly observe the sexuality of workers. The issue then is whether existing models of employer, co-worker or customer discrimination can be applied to sexual orientation or whether something else is required. One recent attempt to model discrimination by sexual orientation is Frank (2004), who argues that it may be in the interests of a discriminating employer to offer a contract that induces LG workers to “come out”, if their perceived benefit from coming out exceeds the loss in wage/promotion prospects offered by the discriminating contract. According to this model, the pay of lesbian women could suffer the dual effect of being female and being lesbian. Gay men may be paid more than women in order to “come out” but discrimination ensures they suffer more in terms of promotions.

Few discrimination models consider the possibility of differential treatment for different subgroups within any minority population. Yet it is reasonably easy to think that employer, co-worker or customer tastes for discrimination could vary with a combination of characteristics, such as age and education. Across different job sectors, anti-discriminatory policies including
sexual orientation are more prevalent in the U.S. public sector than the U.S. private sector and equal opportunity policies were typically adopted earlier in the UK public sectors than in the private sector, allowing the possibility of differential effects across the two sectors. LG individuals may locate in specific areas of the country which are perceived as more tolerant.\(^5\)

Against this background, we investigate whether there may be grounds for furthering this line of research by estimating to what extent relative LG pay and employment vary across different sectors of the population and across different sectors of the economy using cross-section data from both countries. Separate estimates by region should help net out any location effects. Separate regressions for the public and private sectors should help net out any differential practices across the two sectors. Section 2 outlines the data sets used and the estimation strategy employed. Section 3 describes the main results of the study, while section 4 concludes.

2. Data

We have access to two data sets, one for each country, that allow us to identify same sex couples. For the United States, the 2000 Census records the sex of each household head and that of their partner, if present. Given this, we simply classify a same sex household as that in which the head and the partner are the same gender. Using the 5% PUMS sample, gives us around 58,000 individuals, (heads and their partners) in 29,000 same sex households. Since much of our analysis is restricted to those with information on earnings from employment in 1999, the same sex sample used in the estimation of pay gaps is around 41,000, (20,000 men and 21,000 women). We compare this with the sample of 5,100,000 married or cohabiting heterosexuals, of whom 2,000,000 men and 1,630,000 women are in work and supply hourly wage information.

For the U.K., since 1996, the Labour Force Survey (LFS) has contained information that can identify homosexuals who live together. The LFS categorises individuals according to whether
they are married and living with their spouse or not. Those who do not belong to this group are then asked whether they are living with someone as a couple, and if so whether they are living together as a same-sex couple. It is this latter group that form our homosexual category. The LFS is much smaller than the 5% PUMS. To perform the analysis on a reasonably large sample of homosexuals we pool different waves of the LFS, from Quarter 1 in 1996 to Quarter 4 in 2004, so that the data are centred on the year 2000 like the US data, giving us a total sample of 730,000 individuals, (1300 gay men and 849 lesbian women). Of these, 374,000 individuals are in work and supply hourly wage information, (189,000 men and 185,000 women), of which 798 are gay men and 527 lesbian women. After indexing the hourly wage (gross actual weekly earnings in the pay period divided by usual paid hours) to January 2000 prices, we remove outliers in the UK and US data by excluding those who earn less than £1 an hour or more than £500 an hour or less than $1 and more than $1000 an hour, respectively.

This method of identifying the LG population, similar in both data sets, is not perfect as it does not include homosexuals who are married and living with an opposite-sex partner or those who do not live with a partner, whether they have one or not. Moreover, it does not include those who live with a same-sex partner but do not reveal it in the survey. There is no information to distinguish between gays and bisexuals, or any other sexual minority group. Most of these individuals, therefore, appear in the 'heterosexual' category. Although these exclusions may bias the applicability of our results for the entire LG population, by comparing the LG sample population to an appropriate sample group of non-gays which, we believe, will contain fewer unmeasured LG individuals, then we can reduce any composition bias among this population sub-group. For this reason we choose to compare the homosexuals in our sample with the set of heterosexual couples, both married and cohabitees.
The model used to estimate the potential impact of being gay in the labour market is the conventional semi-logarithmic earnings equation suggested by Mincer (1974). The model is specified as follows:

\[\ln(W_i) = \alpha + \beta G + \gamma X_i + \epsilon_i \]

(1)

where \(\ln(W_i) \) is the natural log of real hourly wage, \(G \) is a dummy variable which takes the value of 1 if the individual is gay or lesbian and zero otherwise, \(X_i \) is a set of observed exogenous conditioning variables that are necessary to control for the fact that the LG and heterosexual sample populations may differ across factors known to be associated with differential earnings and \(\epsilon \) is assumed to be a well behaved error term. Throughout we present separate regressions for men and women.

The set of control variables is limited by the information contained in both data sets. The US census data has fewer potential control variables than the UK LFS and we constrain the covariates to be the same, or as close as possible, in both countries. This allows us to control for any differences in age, education, race and health alongside broad 1 digit region, occupation and industry controls. Age and education should help capture differences in human capital acquisition. The job characteristics should help net out any effects of preference sorting, whereby individual preferences for the type and location of any job can result in segregation or concentration of minority groups in certain jobs which may be higher or lower paid than the average. Whether the extent to which any sorting is voluntary or the result of discriminatory hiring practices in certain industries or occupations is unknown, so that the same sex coefficient captures any differential pay effects net of any discriminatory sorting. Any regression estimate is open to the possibility of omitted variable bias. To an extent estimating separate regressions for more homogenous sub-groups of the population will reduce the influence of unmeasured characteristics on the regression estimates.
We next detail how to measure the LG pay gap, how to examine whether pay gaps vary over subgroups of the population and to what extent factors like age or occupation can account for differences in pay between heterosexuals and the LG sample population. If we are interested in the average pay difference for LG individuals then this is given by the coefficient β in (1). In percentage terms, $\exp^{\beta}-1$ is the pay advantage or disadvantage of being gay. However we are interested in how this average pay differential varies across different sectors of the economy, so we split the sample into various sub-groups (eg college, less than college) and compare the same sex couple coefficients based on equation (1) for each of these sub-groups. In estimating the effect in this way, we are obliged to assume that the earnings generating function for other characteristics is the same for the LG and non-LG populations, which may not be true in a discriminatory environment, (see Arabsheibani et al. (2005) for more discussion on this).

However the relatively small LG sample sizes, particularly in the UK, preclude estimation of separate earnings equation for the gay and non-gay samples. Nevertheless, the sub-sample regressions do allow the coefficients on all covariates to differ from those in the aggregate regression. It is true, however, that the estimated coefficients for the control variables in any regression are influenced more by the effect for the majority group, since OLS coefficients are, approximately, a weighted average of the coefficients on heterosexuals (N) and the coefficients on the LG sample (G).

$$\hat{\beta} = [(X_N'X_N + X_G'X_G)^{-1}(X_N'X_N)]\hat{\beta}_N + [(X_N'X_N + X_G'X_G)^{-1}(X_G'X_G)]\hat{\beta}_G$$

(2)

or

$$\hat{\beta} = W_N\hat{\beta}_N + [I - W_N]\hat{\beta}_G$$

(3)

where $W_N = (X_N'X_N + X_G'X_G)^{-1}(X_N'X_N)$

Since the sample of non-gays is much larger than the latter, the effect of any variable on the former sample is dominant in determining the aggregate effect. However, this will not effect the interpretation of the estimated coefficient on the gay dummy variable which remains the average difference in log hourly pay between gay and non-gay controlling for any differences in the X
variables between the two groups. The estimated coefficient on the same sex dummy is however sensitive to certain control variables. No-one among the UK sample of same sex couples is classified as married. The Civil Partnerships Act which conveys legal recognition to same sex relationships only became UK law in December 2005. Nor are there any same sex couples with dependent children in the UK sample. However, the difference in average wages between our 2 groups in a regression with a set of coefficients on the control variables B and a coefficient on the LG dummy, β_G, is given by

$$\ln W_N - \ln W_G = \bar{X}_N \beta - \bar{X}_G \beta_G = (\bar{X}_N - \bar{X}_G) \beta - \beta_G \quad (4)$$

If $\bar{X}_G \to 0$, as will happen if the values for a particular variable are concentrated at zero, then the B coefficients in the vector apply only to the heterosexual group. This makes the coefficient on the gay dummy, β_G, a measure of the difference in pay between the LG group and the default group of heterosexuals, not the average for all heterosexuals. For this reason we exclude variables, like marital status and dependent children that do not vary within the gay category. The same sex coefficient is therefore always a measure of the net difference in pay between the LG group and average pay in the majority group.

We next assess the contribution of each block of control variables, such as education or industry, to the change in the same sex coefficient between the simple 2 variable regressions reported in Table 2 below and the estimate when the regression controls are added in Table 3 below. Since the usual formula for omitted variable bias states that the difference in the estimates of the LG effect between a 2 variable and k variable mode is given by:

$$\beta_{\text{samesex}}^{\text{2 var}} = \beta_{\text{samesex}}^{\text{k var}} + (X_{\text{samesex}}' X_{\text{samesex}})^{-1} (X_{\text{samesex}}' X_2) \hat{\beta}_2 \quad (5)$$

where X_{samesex} is LG the dummy variable, X_2 is the set of controls and $\hat{\beta}_2$ is the vector of OLS estimates on those controls from the multiple regression, then it is straightforward to estimate the second term on the right hand side of (5) and decompose it to give the contribution of any block.
of controls to the difference between $\beta_{\text{same}_{\text{var}}}^{2}$ and $\beta_{\text{same}_{\text{var}}}^{k}$. Note that the estimated contribution of any set of controls which involve dummy variables, for example education in this study, is not affected by the choice of default category.10 The same sex coefficient and indeed all other coefficients except the constant in the multiple regressions are also invariant to the choice of default categories of a block of additional control variables.11

3. Results

We begin with a simple description of the differences in the principal control variables between the gay and heterosexual samples. Table 1 indicates that, at around 1 per cent of the total sample, there are more than three times as many same sex couples relative to the population in the US data set than in the UK data set. Common to both data sets is the fact that same sex couples are, on average, younger and more highly educated than heterosexual couples. Concentration of same sex couples in certain geographic areas is suggested by the high share of same sex couples in London and California. The concentration of same sex couples in Washington D.C. is even greater. Here, around 7.4% of working men in couples are gay and 2.8% of working women in couples are Lesbian.12 There are relatively more same sex couples working in the public sector in the UK, but not in the US, and relatively fewer same sex couples work part-time in both countries.

TABLE 1 HERE

Wage Differentials

We next outline the average differences in log hourly pay across the different sub-groups. The top panel of Table 2 gives the unadjusted average differences in log hourly pay for individuals living as a same sex couple relative to heterosexual individuals living as a couple in the United States. For men in the year 2000, there appears to be an average pay penalty for gay men of around 9%. This penalty does not vary much across different education groups (columns 2 and 3)
but does appear to be significantly lower in the public sector than in the private sector, (columns 4 and 5) and lower among younger men than among older men, (columns 7 and 8). There does not appear to be any pay penalty for gay men living in the state of California, (column 6). Among women, there is an average pay premium of around 14% for Lesbians, which is in line with most previous estimates for the United States. When the sample is split, there are larger relative pay premia for lesbian women with less than college education, those living in California. Despite the opposite signs these estimates are consistent with the pay rankings observed for gay men. The LG pay premium is higher among full-time workers and there is a particularly large relative premium among lesbian women over 40. In contrast to the results for men, there is little difference in the LG pay gap among women working in the public and private sectors.

TABLE 2 HERE

The bottom panel of Table 2 repeats the exercise for the UK. Unlike in the U.S., the aggregate unadjusted pay difference between gay and heterosexual men is positive, at around 5%. Average hourly pay among lesbian women in the UK is, like in the US higher than the average pay of heterosexual in couples. At around 36% this LG pay premium is twice that observed in the US.

Despite the much smaller size of the UK sample, and the correspondingly larger standard errors around these estimates, there does appear to be more variation in the pay gap across the UK sub-samples. The spread of estimates from the female samples ranges from .053 to .437 log points in the UK compared with .070 to .210 log points in the US. There is a raw pay penalty for gay college educated men in the UK and a much larger pay premium for older gay men than for younger gay men, the opposite effect to that observed in the US. There is also a larger pay premium for gay men living in an area with a large gay population, again unlike in the U.S. For women, the average pay premium conceals larger pay premia for lesbian women in part-time
work, (the opposite effect from the United States), and larger relative gains for lesbian women working in the public sector, (unlike in the U.S.). However the relative advantages for older workers and those with college education observed for lesbian women in the U.S. also appear to hold for lesbian women in the UK, (though the sizes of these effects are quite different).

At face value, the lack of a consistent pay differential both within and between countries would suggest that a single theoretical framework with which to explain these differentials will be hard to come by. Before discussing this further we first check to see how robust these differentials are to the addition of controls for observable differences between the gay and heterosexual groups in a set of control variables also known to influence wage levels. If, for example, there were more graduates among lesbian women under 40 than among heterosexual women, this could help explain why there appears to be a large pay premium for those in a same sex couple. Part of the estimated effect on the gay dummy in Table 2 would be picking up the graduate effect. Similarly, if the share of college graduates in any group differs in the US relative to the UK, this could again help explain why the raw pay gaps vary across countries. Table A1 in the appendix gives the sample means of all the control variables used in this study for both gay and heterosexual groups.

Table 3 outlines the adjusted pay gaps for the same groupings that appear in Table 2. Taking the US sample first, the aggregate pay gap for men is little changed with the addition of personal and job controls. Likewise the male pay differentials across different education groups or in the private sector do not change much when differences in age and other factors between the gay and heterosexual samples are allowed for. In contrast, the average pay penalties for gay men working in the public sector and among the under 40s become larger net of controls and the zero effect on pay observed in Table 2 for California now becomes negative. For women, the addition of controls generally reduces the observed pay advantages for Lesbians. The aggregate pay
premium falls by around 6.5 percentage points, and the LG premium among college educated
women falls to just 3%. Similar sized falls in the positive coefficients are observed in the public
and private sectors, among the age groups and in California. The relative ordering of the pay
premia across the different groupings does not change with the inclusion of controls.

TABLE 3 HERE

For the UK, the controls make the coefficient on gay men in the aggregate regression
insignificant, in contrast to the aggregate US data for men. The size and significance of the same
sex coefficient in all the sub-group regressions for UK men are also lowered, so that, with the
possible exception of those under 40 and those working in the private sector, there is no longer
any significant difference, on average, between the pay of gay men and that of heterosexual men
living in a couple. For women in the UK, like in the US, the positive premium observed in Table
2 for the aggregate regression is much reduced when controls are included. The estimated
aggregate pay advantage falls from 36% to 6%. The size and significance of the same sex
coefficient in all the sub-group regressions for women are also lowered. Lesbian women over 40,
in full-time work, in the public sector and with less than college education receive higher pay on
average, other things equal, but the size of these pay premia are now similar to the size of the
effects observed for Lesbian women in the US. Only in the private sector does the same-sex
effect for women appear to differ substantially across the two countries.

So it seems that allowing for differences in the socio-demographic composition of the two
samples in both countries brings the estimates of the same sex pay differentials much closer
across the two countries, particularly for women. In order to establish which controls are
primarily responsible for driving these results, Table 4 outlines the contributions of different
characteristics in changing the same sex coefficient estimates based on equation (5). The samples
of gay men in the UK and the USA, are more educated than the heterosexual male samples.
Since more education means higher wages, on average, then controlling for education reduces the same sex coefficient estimates, by around one half of the total change in the UK and by more than the total change in the US, (column 1 row 2) . Similarly, because the sample of gay men is younger than the heterosexual sample and older workers receive higher wages on average, then controlling for age tends to increase the size of the same sex coefficient, (row 3). In general the education effect is larger than the age effect, so the net effect of the two is to reduce the same sex coefficient. Indeed education along with region, (row 9), accounts for most of the fall in the same sex coefficient between Tables 2 and 3 for gay men in the UK and in the USA. Job controls tend to offset each other, so the concentration of gay men in higher paying occupations is offset by the concentration of gay men in low paying industries.

For women in both the UK and the USA, education differences between the lesbian and heterosexual samples again account for much of the reductions in the positive same sex coefficient estimates, reflecting the larger share of college educated women among lesbians compared to heterosexual women, (see Table A1). The differences in age between the samples and hence the effects of age in the regressions, are much smaller among women than men. Unlike for men, occupation and industry generally have the same sign. Lesbian women in both countries are concentrated in higher paying occupations and in higher paying industries. Regional location patterns matter less for lesbian women than gay men, because the former are more geographically dispersed than the latter. In the UK, where part-time working among women is more prevalent than in the US, the relatively small share of lesbian women in part-time work accounts for a sizeable fraction of the reduction between the unadjusted and adjusted coefficients between Tables 2 and 3.

TABLE 4 HERE
Suppose we take the estimates in Table 3 as summaries of the net differences in pay between individuals living in LG and heterosexual couples. For men it seems that older gay men and those working in the public sector receive lower pay, on average, in the United States. However the reverse appears to hold in the UK. So a simple model of age discrimination or sector-specific employer discrimination would have difficulty in explaining these findings for both countries. Moreover, older lesbian women appear to experience a larger net pay advantage in both the US and the UK. Yet the results for women are not uniform in both countries. Lesbian women working in the private sector do relatively worse in the UK but relatively better in the US than lesbian women working in the public sector. For nearly all female groups the positive effect of same sex remains, so that it is hard, at first pass, to reconcile this with a simple model of discrimination. Of course these regressions do not tell us whether lesbian women would be paid even more were they not discriminated against, something that would only be revealed with separate regressions for heterosexual and lesbian women within each sub-group.

Differential Employment Rates

Since discrimination can also be manifested in hiring rates as well as wages, it may be instructive to see whether differences in employment rates for the LG sample exist and, if so, whether there is any variation across demographic groups. The possibility also always exists that the results from the wage regressions are, in part, influenced by selectivity, differential employment probabilities and wage rates driven by differences in unobservable characteristics. We do not deal with the issue of selectivity here, but simply examine whether employment rates differ for the LG sample before and after conditioning on age, education, race and health by gender and within the broad demographic categories outlined in the earlier Tables.

The unadjusted probability of employment estimates in Table 5 differ for men across the two countries; gay men in the US are less likely to be in work and gay men in the UK more likely.
The addition of controls makes the same sex coefficients for men negative in both countries, so gay men are less likely to be in employment than heterosexual men. The impact of controls on the same sex coefficient is much larger in the UK than in the US, suggesting greater heterogeneity among the sample of UK gay men relative to the heterosexual male sample. There is also considerable heterogeneity in the same sex coefficient for men across the different sub-groups. Relative employment rates among men with less than college education are much lower among US gay men than for those with a college education. However the opposite appears to hold in the UK. For women the same sex coefficients are positive in both countries and change little with the addition of controls. The aggregate employment rate differential in favour of lesbian women is around 10 to 12 percentage points, though this obscures a higher differential for women over 40 and a lower rate for those under 40 in both countries. The employment differential is higher for college educated lesbians in the US than for lesbians with less than college education, but the opposite relative effects hold in the UK.

Conclusion

It seems then that average pay differentials between lesbian women and heterosexual women and between gay men and heterosexual men conceal much variation in these differentials across age groups, education, regions and sectors of the economy. There is also considerable variation in the wage and employment rates of gay men and lesbians relative to heterosexuals across countries, even among those with similar characteristics. Whether these differentials reflect different discriminatory practices in different countries, in different sectors or across different sub-groups within the minority population is beyond the scope of this paper, but future research should pursue this. Separate estimations for the majority and minority populations disaggregated by sub-groups would be an obvious step forward, sample sizes permitting. Until then, it seems that the results from this study suggest that the possibility of differential discrimination exists and may provide a starting point for theoretical and empirical research in this area.
References

TABLE A1 HERE

TABLE A2 HERE
Notes

Thanks to Lee Badgett and Jeff Frank for helpful comments.
UK Data made available through the ESRC Data Archive at the University of Essex

1 Badgett (1995) is an exception. She finds large negative wage effects for lesbians net of controls.

2 Summarised, for example by Altonji and Blank (1999).

3 See, for example, http://www.lambdalegal.com for a list of U.S. states and cities that prohibit discrimination based on sexual orientation.

4 To the extent that differential promotions can be accounted for with a set of occupational controls, it should be possible to separate out promotion effects in empirical work.

5 Black, Gates, Sanders and Taylor (2003) argue that individuals LG individuals may be disproportionately concentrated in high amenity areas because fewer resources are devoted to child rearing.

6 Bisexuals with same-sex partners will appear in the LG group.

7 One alternative approach would be to estimate a random coefficients model that allows for individual dispersion in the returns to a given coefficient, see for example Harmon, Hogan and Walker (2004). While this gives an indication of the extent of dispersion around an estimate, it does not identify the possible source of any variation. For this reason we prefer to disaggregate the effect across specific population groups.

8 In UK data sets, the head of household is always classified as male, if present, so that nearly all the heterosexual males in our sample are classified as heads of households.

9 The working paper version of Arabsheibani et al. (2005) finds little difference in the pay gap for Lesbian women relative to heterosexual women with and without children, which tends to negate any argument relating to greater specialisation in market production among those with no
children. Nor are the components of a Oaxaca decomposition significantly different when benchmarked against either group.

10 The contribution of any one block will of course be sensitive to different sets of non-orthogonal controls.

11 This follows because of the (arbitrary) normalisation needed to identify the coefficients on any set of dummy variables in any regression. Perhaps the easiest way to see this is to consider a simple regression of y on a constant, a continuous and a dummy variable $y_i = a + bX_i + d_i + u_i$. It follows that $(y_i - \bar{y}) = b(X_i - \bar{X}) + u_i$, so the regression coefficient stays the same whatever the default category of the dummy variable. The situation is different when separate regressions are run for the majority and minority populations. See Oaxaca and Ransom (1999) for a discussion on this.

12 The relatively small sample sizes for Washington D.C. however, preclude us from undertaking D.C.-specific regressions.

13 Note that the estimate on any one coefficient need not lie between the estimates from any 2 sub-samples, because equation (3) shows that the aggregate estimate on any single variable is a weighted average of all the coefficients on all the variables in the model from the 2 sub-groups.

14 In truth as the adjusted R^2 values show we can explain at most 44% of the variation in pay

15 The aggregate regressions for the UK reported in Arabsheibani et al. (2005) suggest that this is not the case. If anything lesbian women in their sample appear to be rewarded more for given characteristics. As ever, information on actual work experience would make for better estimation.

16 The presence of dependent children is often used as an identifying for the probability of employment, even though this variable has been shown to be correlated with the level of wages. Since none of the lesbian women in our UK sample have dependent children we are unable to pursue this issue here.