Dr Paul Alton
Senior Lecturer
Telephone: (01792) 295069
Room: Accademic Ofice - 021
Ground Floor
Margam Building
Singleton Campus

My PhD and initial postdoctoral research were in astrophysics with an emphasis on the propagation of optical radiation and the emission of thermal radiation. When I came to Swansea in 2004, I developed a new approach to carbon modelling, simulating photosynthesis in tree canopies through the transfer of both diffuse and direct sunlight.

My current research and teaching interests focus on carbon, water and energy exchange between the land-surface and the atmosphere. I seek to understand fully these processes, particularly over vegetation, and how they might change under a future climate. I use both complex and simple Land-Surface Models to simulate these processes, calibrated and constrained by ground-based (eddy covariance FLUXNET) observations and satellite remote-sensing (e.g. MODIS).

Areas of expertise:

1. Environmental modelling and radiative transfer in vegetation canopies
2. Global simulations of carbon, water and energy exchange between the landsurface and the atmosphere
3. Parameter retrieval of biophysical properties using optimisation methods
4. Assimilation of eddy covariance and satellite remote sensing into simple and complex Land-Surface Models.


  1. Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types. Agricultural and Forest Meteorology 250-251, 361-375.
  2. Reconciling simulations of seasonal carbon flux and soil water with observations using tap roots and hydraulic redistribution: A multi-biome FLUXNET study. Agricultural and Forest Meteorology 198-199, 309-319.
  3. The sensitivity of models of gross primary productivity to meteorological and leaf area forcing: A comparison between a Penman–Monteith ecophysiological approach and the MODIS Light-Use Efficiency algorithm. Agricultural and Forest Meteorology 218-219, 11-24.
  4. Retrieval of seasonal Rubisco-limited photosynthetic capacity at global FLUXNET sites from hyperspectral satellite remote sensing: Impact on carbon modelling. Agricultural and Forest Meteorology 232, 74-88.
  5. From site-level to global simulation: Reconciling carbon, water and energy fluxes over different spatial scales using a process-based ecophysiological land-surface model. Agricultural and Forest Meteorology 176, 111-124.

See more...


  • GEG237 Global Vegetation Patterns and Dynamics

    In this module, we account for vegetation patterns on different spatial scales (global, regional and local), according to their environment and the requirements of plants for growth and survival. We examine how the distribution of vegetation has changed on different timescales and how it is likely to be altered in the future by human activities. We employ a series of case studies (e.g. water-limited and temperature-limited ecosystems) to reveal the impact of environment on vegetation and also how plants interact with their own environment through adaptation and sometimes through feedback mechanisms.

  • GEG354 Environmental Modelling

    Increasingly used to represent climatic, biogeochemical, and ecological systems, computer modelling is a vital tool to understand environmental change. This module provide a practical introduction to the various methods, techniques, and skills required for computerized environmental modelling. Exploring the broad arena of environmental modelling, the module demonstrates how to represent an environmental problem in conceptual terms, formalize the conceptual model using simple mathematical expressions, convert the mathematical model into a program that can be run on a desktop or laptop computer, and examine the results produced by the computational model. Equally important, the module imparts skills that allow you to develop, implement, and experiment with a range of computerized environmental models. The emphasis is on active engagement in the modelling process rather than on passive learning about a suite of well-established models. The module tries to take a practical approach throughout, one that does not get bogged down in the details of the underlying mathematics and that encourages learning through "hands on" experimentation.