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Abstract
Coastline mapping is safety critical problem for worldwide shipping. The complexity
of global coastlines and lack of labelled images has been a challenging task for modern
techniques to map accurately. This paper looks to find a human centred approach by
creating a tool that allows experts to label large satellite image datasets. The initial problem
space of feature extraction from satellite images via artificial intelligence networks is scoped.
Then dimensionality reduction to map those latent features into a two dimensional tool.
A pipeline for such a process has been implemented with a example implementation
using Auto-Encoders.

In this we find that Auto-Encoders are suitable for feature extraction and can cluster
the data well. However when considering coastal features the complexity of problem is
clearly shown with features being so varied. Future work looks to implement new models
discussed in the paper and to expand the pipeline proposed.
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Chapter 1

Introduction

Worldwide shipping relies on up-to-date and accurate navigational charts on a global
scale. Coastal shoreline are a feature that need to be mapped robustly and frequently
for commercial navigational purposes. Containing a vast array of unique geographical
features makes them notoriously hard to map. Coastal shorelines can vary from mangrove
forests, sheer cliffs to coastal cities. Changes by man-made and geographical processes
adds a temporal challenge. Satellites are the most common method for mapping, with
a geocentric orbit they can provide periodic and large swath images of earth’s surface.
By using modern artificial intelligence techniques a geo-generalisable model could be
generated to map coastlines. However challenges arise when considering the fairly small
size of coastal features compared to the large pixel resolution of satellite images; creating
a uncertain or “fuzzy”” boundary between water and land. Combined with the challenge
of no ground truth information, labelling data for training models becomes extremely
difficult. Therefore a method to extract features from satellite data and label them
accurately is essential. Manual labelling would be a difficult task to achieve with the shear
amount, variation and frequency of data. Likewise using purely algorithmic techniques to
label data would prove unsubstantial due to such varying features. This paper looks for
a method to combine both approaches by creating a tool that aids in extracting features
and allows a human to select the features. An optimal solution would present a visual
tool that can allow the user to select higher level extracted features of multiple images
to label.

The aims of this research will look to scope and mould future research. Finding key
areas of research that allow feature extraction for the creation of tool to help expert
users to labels mass quantities of data. In addition it will create a simple pipeline of the
necessary methods and look to implement them.

Images in this paper are taken from the Copernicus Sentinel 2 missions operated by
the European Space Agency. The payload provides wide swath, high-resolution, multi-
spectral images. The mission is comprised of 2 different satellites in the same orbit but
phased at 180 degrees. The multi-spectral images are comprised of 13 bands; four bands
at 10m, six at 20m and three at 60m spatial resolution.
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Chapter 2

Literature Review

2.1 Sentinel and SEN2COR Pre-processing [13, 36]

Sentinel 2 mission is a joint adventure between European Commission(EC) and the Eu-
ropean Space Agency(ESA) to from the Global Monitoring for Environment and Secu-
rity(GMES). In a paper provided by the ESA and industrial teams from Astrium is a full
breakdown of all of the Sentinel 2 mission specifications and processing of images before
being distributed[13]. There are two main levels of images available 1C and a further
processed image 2A. Firstly we will talk about images in level 1C which is provided by
GMES and then 2A, using a framework called Sen2Cor, developed by Telespazio VEGA
Deutschland GmbH on behalf of ESA[36].

Figure 2.1: Processing of Sentinel images from level-0 to level-1C. Taken from [13].

Figure 2.1 shows the pipeline for creating 1C images from the initial Instrument Source
Packets (ISP). Level 0 segments the ISP into granules and detects any initial errors by
comparing the data to pre-defined ranges for the values. Granules, sometimes referred
to as tiles, simply refers to the 100 by 100km segmentation of Earths’ ortho-images.
Furthermore level 0C are produced by creating a cloud mask based on the spectral criteria
in the preliminary quicklook. Level 1A are produced by decompressing the ISP data and
formatting to a JPEG2000 format. Level 1B data is radiometrically corrected radiances
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and geometrically refined. Finally level 1C provides a top of atmosphere(TOA) reflectance
and a cloud , land/water mask.

Figure 2.2: Processing of Sentinel images from level-1C to level-2A. Taken from [36].

Figure 2A similarly shows the pipeline from 1C to 2A images. The main product of
the pipeline is to provide a Bottom-Of-Atmosphere (BOA) reflectance image compared to
level 1C top-of-atmosphere(TOA). The key here is that the ortho-image BOA is calculated
with correct reflectance. The extra outputs are as follows; Scene Classification(SC) map
with cloud and snow probability, Aerosol Optical Thickness(AOT) map and a Water
Vapour(WV) map. Naturally as the purpose of this project is to map coastal features
the main focus will be on BOA 2A images.

2.2 Normalised Difference Water Index

The Normalised Difference Water Index(NDWI) is a widely used method, also in the
Sen2Cor framework, for multi-spectral imaging when segmenting water[16, 26, 29, 32,
65, 70]. Since the early days of satellite imaging mapping bodies of water has been of
particular interest, for environmental concerns or otherwise mapping has played a key
role. Most of this work relies on the concept that wavelengths refract differently based
on the matter composition of the material they hit. For example, NDWI concept was
evolved from the Normalised Difference Vegetation Index(NDVI). The NDVI works on
the simple principle that healthy vegetation reflects more near-infrared(NIR) and green
light whilst absorbing more red and blue light. Similarly the NDWI shares the same basic
concept to its algorithm. There are two NDWI algorithms derived from NDVI; one by
Gao[6] to index water content in vegetation and secondly by McFeeters[37] to monitor
water content in bodies of water. For the purposes for this research the second one is
of interest, water detection relies on the phenomenon that water absorbs more visible to
infrared wavelengths compared to other materials.

(Xgreen − xnir)
(Xgreen +Xnir)

Although effective at suppressing most vegetation and land features the method would
run into complication with built-up land noise. To combat this problem Xu proposed
a Modified NDWI(MNDWI)[67]. Xu simply substituted the NIR for a Mid Infrared
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Band(MIR), simple substitution of wavelengths without further processing seemed effec-
tive for the small regional data that was tested.

(Xgreen − xmir)

(Xgreen +Xmir)

The solution proved to considerably suppress built-up noise however could not elimi-
nate it, the method also provided added benefit of more subtle detection of differences in
water quality. Du et al[15] produced a paper showing the results of MNDWI and NDWI
on images from Sentinel 2 with different pan-sharpening techniques. The paper reinforces
the evaluation that NDWI suppresses vegetation but can result in positive segments for
centres of large built up areas. Whilst MNDWI suppresses the built up areas. The use of
NDWI techniques can provide a fairly accurate representation of the waterline however
they need adjustments and tweaking for each local region they map. One key example
would be for mangrove mapping in India requires the combination of multiple indexes to
achieve the desired affect[62]. The main disadvantage for spectral based approaches are
that they do not contain any of the spatial features of the data; information regarding
neighbouring pixels or variation of size and feature complexity. However the use of this
technique would prove useful for extracting coastal locations.

2.3 Early Feature Extraction

If the spatial arrangement of the feature that needed extracting is known we can approach
it from a knowledge based approach. An example of such an approach is taken by
Chaudhuri and Samal [7]; bridges are surrounded by water on each side or that most
roads that lead or expand over a bridge are of constant width and darker than their
surroundings. Similarly for coastline extraction there is only one certainty that they occur
at the edge of a water line, however the coastal land itself does not contain homogeneous
characteristics as found in roads. To capture more characteristics of each individual
feature could be taken by combining multiple feature extraction algorithms and applying
a clustering or classifying algorithm. Huang et al [25] create a structural feature set
(SFS) to tackle this issue; SFS is a combination of length width index and pixel shape
index with new spatial measure of directional lines. The constructed SFS dataset is
passed through a state vector machine to classify between the different features. Another
paper that takes a similar is GENetic Imagery Exploitation (GENIE) [23]. GENIE takes
multiple different primitive image processing operators as genes in a genetic algorithm.
For different applications a different set of primitive operators can be taken. These
genes are then used to build a genetic algorithm trained on labelled data for classifying
other images. Although genetic algorithms are not as common today the approach starts
heading towards more machine learning based structures to classification however still
use non machine learning based approaches to feature extraction.

2.4 Feature Reduction using Machine Learning Ap-

proaches

The next iterative step towards machine learning techniques is using ML to extract the
features directly from the multi-spectral image. Applying ML techniques results in more
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non-linear features learned. The most common approach used to be principal component
analysis (PCA)[48]. PCA identifies relations between features by eigen-decomposition on
the covariance feature matrix. The resulting eigenvalues and vectors can be used to find
the principal components of the data set, which features provide the most information
about the image. Alternatively the eigenvalues and vectors can be used as their own
feature regarding them as a filter[55]. This provides a way to reduce dimensionality
whilst also extracting features where the most important information is only extracted.
As the features are reduced the storage space required reduces and if the features is
reduced to near two it becomes easier to visualise. However the algorithm has a high
computational cost with the need for large amounts of memory to run[48]. In addition
PCA applied globally on the dataset can remove local features present in the dataset.

2.5 Enhancing Low Resolution Images Imaging

Figure 2.3: Example of enhancing low resolution using the Dsen2 framework. The 10m
image is the pan-chromatic image and the first row shows the original images. The bottom
row is the resulting process of pan-sharpening. Taken from [31].

This section briefly touches on the recorded spatial resolution difference in wave-
lengths and the process taken by many studies on rectifying the issue. Images from the
Sentinel 2 mission come in three different resolutions, 10m, 20m and 60m however not
all wavelengths are recorded at the highest resolution. The lower resolution, sample area
per pixel, images do not contain as many wavelengths as the higher resolution images.
Only four bands are recorded at 10m resolution whereas 20m and 60m have nine and
eleven respectively. Having all bands at their highest spatial resolution allows for more
data to train on and can be used if needed for algorithms such as MNDWI where the
band required many only be recorded at low resolution. To overcome this lower resolution
images, 60m or 20m, can be up-scaled to 10m creating a complete data cube at maximum
resolution,figure 2.3[31]. To overcome this most commercial satellites, Landsat, SPOT,
RapidEye and WorldView produce a panchromatic image band that combines the blue,
green and red bands. In other words the panchromatic image contains the total light
energy from the visible spectrum where each pixel is commonly represented in greyscale.
As panchromatic sensors collect higher amounts of radiation, each image detects a higher
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amount of intensity change per pixel resulting in a higher spatial domain. Each pixel
represents a smaller area. In contrast multi-spectral images need to sample a larger re-
gion for each band as the amount of energy available is so low. This can be seen with
Sentinel 2 data as only low wavelength bands are recorded in a higher spatial domain,
sample area per pixel, as the amount of energy needed for information capture is lower
then that of long wavelength bands. Sentinel 2 doesn’t provide a panchromatic image
however bands 2,3,4 (R,G,B) and 8 are provided in high spatial resolution so deriving a
panchromatic image from those is possible.

The panchromatic image can be fused with the multi-spectral images to provide an
image with the resolution of the panchromatic image and the spectral properties of the
later image. This process is known as pan-sharpening. There are multiple methods that
can be incorporated into the fusion process, with component substitution being the most
common. In component substitution the multi-spectral image is projected into a new
space containing spectral information and then substituted with the panchromatic image
for spatial structure[59]. Then an inverse transform is applied to obtain the original
space[63]. Well known component substitution methods are PCA[8, 45], Intensity Hue
Saturation[47, 71], Brovey[14, 17, 22] or Gram-Schmidt(GS)[2, 30]. Another method to
attack pan-sharpening is to apply a Bayesian model. By producing a statistical model to
join the characteristics of the pan-sharpened resulting image and pan image[63]. Further
non pan-sharpening models include the use of CNN’s[31], naive interpolation and there
are many others.

Thomas et al [59] highlight many problems that occur when apply pan-sharpening to
an image. Firstly the acquisition time of both the Pan and multi-spectral images may
not exact even if said to captured at the same time. This is evident in images with fast
moving objects, such as planes. Secondly the position of the sun and other illumination
factors could alter the size and orientation of shadows slightly. Most importantly spectral
bandwidths reflect different depending on the matter or material and can cause extra noise
in the fusion process as panchromatic image records at a different wavelength.

2.6 Artificial Intelligence Techniques

Artificial Intelligence (AI) is the most recent and promising technique for classifying
images as a result of extracting high level non linear complex features. AI techniques
are built on the concept of the neuron pathways and synapses found in animal brains.
Neurons in the brain are connected in a vast network with each neuron linking to others.
Synapses between the neurons allows for signals to be transmitted to each other. With
this basic understanding an artificial Neural Network (NN) is created; multiple layers of
neurons each connected fully to each other. An artificial network is comprised of an input
layer, few or in most cases many hidden layers and finally an output layer.

2.6.1 Basic Feed Forward NN [43]

In a NN we expect the input values to activate certain neurons in the next layer which
in turn activates a specific pattern of neurons in the next layer and so on. The final layer
which normally represents each class has the highest value in the neuron for the class of
the image. A simple example being if a image of the digit 5 is entered the 5th neuron
representing the classification for images representing a 5 at the end of the NN should
contain the highest value. Before getting into the specifics it is important to understand
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that NN are layered as during training the expectation is that each layer learns more
higher level features compared to the previous layer.

Each neuron in a fully connected network has edges or weights connected to it from
each neuron in the previous layer. The neuron takes the weight W and value A from the
previous neuron and multiplies them together, then continues to do so for each neuron in
the previous layer whilst summing them together. w1a1 +w2a2 + ...+wnan. The result of
this process can be a number that varies in range. Therefore a function to map it between
two values is used. For example the sigmoid function. There is an extra neuron in each
layer termed the bias component. The bias is added to each summation of weights which
allows for the neuron to only activate when the information is meaningful. For example
if the neuron consistently gets a value of 10 even when it has no meaningful information
to contribute from the previous input we might add a bias of negative 10. This is a very
simple example of how information is fed forward in a NN.

The next step in a NN is to try and minimise the error of wrong predictions. To do
so we train the network on images for which we know the classification. We can quantify
the result error by finding the difference in the predicted and actual result, known as a
cost function, C. A simple cost function may be

C =

n(l−1)∑
j=0

(a
(L)
j − yj)2

where L is the layer, in this case the final layer, a is the activation and j denoting
the neuron in the layer. In reality the entire combination of weights through the entire
network are what give the resulting classification so the cost function incorporates all
of them. To optimise the network we want to minimise the cost function by using back
propagation.

∂C0

∂a
(L−1)
k

=

nL−1∑
j=0

∂z
(L)
j

∂a
(L−1)
k

∂a
(L)
j

∂z
(L)
j

∂C0

∂a
(L)
j

Each layer starting from the end of the network moves backwards through the network
changing the weights. The weight changes are calculated in proportion to the correspond-
ing weights and by how much each neuron needs to change finding the most rapid decrease
to the cost. This can be seen in the equation above; the aim to find how sensitive the
cost is regarding the change in weight for the previous layer k. z is the weight before
activation including the bias term. Then the process is continued for each layer for all
the weights and bias terms. Note the equation is somewhat amended for finding the bias
term but it is simply find the ratio between the partial derivative of the cost and bias
terms in the previous layer.

There are a number early papers that utilise NN to classify remote sensing data;
Heerman et al 1992 [24], Bischof et al 1992 [5], Tan et al 2011 [56]. These papers similar to
modern approaches focus their data on particular regions. They also focus on classifying
the main types of land cover i.e. water, forest, urban, agriculture etc. hence they provide
a good accuracy. Heerman found that splitting the image up into smaller sets would
improve the processing time as each pixel is calculated independently from its neighbours
[24]. Bishof who implemented smaller sets by using a 5 x 5 input window found that not
only was it faster but provided textural information within the NN ultimately resulting
in higher accuracy for land based classification[5]. This is certainly not the end all of NN
in research they evolve into different architectures which are explored later. This section
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explores briefly how they work so a basic understanding is established for interpreting
these other architectures.

2.7 CNN’s

As this project pertains to images, satellite images just contain more bands than RGB,
naturally Convolution Neural Networks(CNNs) come to mind. CNNs, unlike NN, keep
spatially local data together with the use of kernels. There are many papers used to
classify land use and building in literature [9, 72]. Much like NN there are multiple
uses for CNNs and different architectures in research. This section explains the main
differences from NN to from a base understanding. CNNs are built of three main layers;
convolution, pooling and fully connected layers [69].

2.7.1 Convolution Layer, Pooling and Fully Connected Layers

Figure 2.4: Example of convolution. Taken from [69].

The convolution layer is a linear process in which features are extracted. A kernel is
applied to the input array of numbers, input tensor, to create a feature map (See Figure
2.4). The kernel simply applies an element-wise dot product at each location in the input
tensor to create a new value in the feature map that relates to the original position in
the tensor image. The number of computations is drastically reduced compared to a fully
connected neural network layer as the new neuron is only connected to the surrounding
pixels not the entire tensor. The kernel size can be changed but the most common sizes
are 3x3, 5x5 and 7x7. In a typical layer there are multiple kernels that are applied to
the same tensor to create multiple feature maps, each kernel therefore being a different
feature extractor. The kernels are the underlying feature extraction force in a CNN and
therefore are the parameters optimised during back propagation. As shown in Figure
2.4 the resulting feature map is only 3x3 compared to the 5x5 tensor. This is a result
of the kernel being unable to center on the outer edge of the tensor. To rectify this we
can create an outer edge of 0′s on the tensor, this is called zero padding. Without zero
padding each convolution following will create a smaller and smaller images.

That being said it is beneficial to reduce the input size, discussed in the pooling
section. A way to achieve down sampling within the convolutional process is to only apply
the kernel at intervals. For example skipping one pixel between each kernel application
this is called the stride. Applying a stride reduces the computational time required
however can result in the loss of information.
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The final step to convolution is the non linear activation. The most common function
is ReLU , f(x) = max(0, x). Due to ReLU’s simplicity it is faster to train and has shown
to achieve better performance.

If the input tensor is kept at the same size throughout the CNN there is reduced chance
of learning any new features, the dimensionality stays the same. Therefore pooling is
employed to reduce the dimensionality and introduce translational, rotational invariance.
Pooling traverses the image in the same method as a kernel, with a filter size, padding
and stride parameter. The resulting image is smaller than the previous with the new
pixel summarising the information in the previous filter region. This can be achieved
through multiple different pooling methods, max, min, average and global.

At the end of a CNN the result is flattened, reshaped to a vector, and like neural
network fully connected to the next layer. This layer then feeds into the final output
which uses a softmax activation function to get probabilities for each class. This is a
very basic summary of how CNN’s extract information using convolution layers, extract
higher level features by pooling and subsequent convolution and finally creating a fully
connected layer to reach a classification.

2.8 Stacked and Sparse Autoencoders

2.8.1 Sparse Auto Encoders

Figure 2.5: Example of an Auto Encoder for a NN. The encoder is shown by the box
surrounding the last two layers, the decoder is the first layer. The input is fed from
bottom to top. In this example the 5 inputs are reduced to 3 latent features. Taken from
[10].

The use of a CNN on its own is not ideal for the purposes of this paper. The main
flaw resides in the fact that pre labelled images are needed to effectively train and extract
features. This is where auto-encoders (AE), a specific architecture for NN, plays a role.
AE can be used on unlabelled data as they are simply trying to encode the image into
features and decode them back into the original image. In other words the encoder creates
features from the image and the decoder generates an image from the features. As such an
AE is a form of generative model. The simplest from of an AE, see figure2.5, with a single
hidden layer with the hopes that the hidden layer can facilitate subsequent learning[51].
As the encoder and decoder are simply the inverse of each other the following holds true
for the weights ,W , Wy = W ′

z = W [10]. That being said the decoder is trained without
knowing the encoders weights. The goal of this architecture is to minimise the error
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between the input and output. The result we are interested in is not the final image but
the latent vectors or features trained by the encoder. If the resulting encoder features are
able to represent the original data where the decoder is able to recreate the data from
nothing but the features we know we have features that accurately convey the image.

2.8.2 Stacked Auto Encoders

An AE is only one layer deep and therefore is unable to provide more higher level features
that we would normally find in the final layers of CNN’s. To attain higher level features we
can stack more hidden layers to the encoder and decoder to match, this is a Stacked Auto
Encoder (SAE). The same training concepts still apply from AE to SAE, the minimisation
of error between the original image and data compared to the decoders generated image is
the goal. This method of training is used by multiple papers on hyper-spectral image land
classification [10, 42]. Chen et al reduce the original images into patches and then apply
PCA reduction to get the first 7 dimensions on the patch to feed into the SAE[10]. PCA
is used as hyper-spectral data has many more channels compared to multi-spectral. Even
with a reduction in spectral channels the paper notes that the SAE took a substantial
time to train compared to SVM or other methods, that being said it was much quicker to
test. Both papers conclude that using SAE result in useful features extracted compared
to SVM, PCA, KPCA or NMF.

Ali et al published a paper that directly influences this research[3]. They looked
to find a way to label time series data whilst also find repeating patterns and outliers.
The main approach in the paper uses Deep Convolutional SAE (DCAE) to extract the
features which are reduced in dimension for producing an interactive tool. To cope with
time series data they produce a sliding window approach to produce a matrix; each
row has a consecutive time step and each column has the next data entry depending
on the stride. This does cause a overlap of data between data points but the paper
states it is useful for avoiding lost data and for a smooth transition between time steps.
If this method was amended for images the result would be a sliding window with an
extra dimension stacking the relevant time steps. These matrices are then compiled
for each image patch and feed through the DCAE. The result from the DCAE is fed
through either PCA , Distributed Stochastic Neighbour Embedding (t-SNE)[35],Uniform
Manifold Approximation and Projection (UMAP)[38] to project into a two dimensional
space. The two dimensional space is required to create an interactive tool that can
facilitate highlighting and exploring the features space. The paper provided multiple
case studies of applications in medicine and biology which show major features can be
highlighted easily via the scatter plot of the two dimensional features extracted from
the DCAE. However the example cases used do not contain as many varying features as
a global coastline would host, therefore is may be questionable if the DCAE could be
effectively reduced to two dimensions. In addition if two dimensions are not conclusive
how could two or more dimensions be mapped into a tool without overcomplicating the
usability. Although the paper does not apply the method to multi spectral images it
could provide interesting results.

2.9 Recurrent Convolutional Neural Networks

Recurrent neural networks are the next iteration in the progress of NN. Recurrent Net-
works remove the limitation of only passing through a feed forward network once. As
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this network now passes images in a linear fashion there are more application based in
the temporal domain than just spatial. Many of the current papers use RCNN to find
and understand change detection between two time step images. Mou et al propose
a CNN to find spatial features and use the recurrent architecture to analyse tempo-
ral dependence[40]. Multiple other papers focus on change detection in multispectral
images[21, 34, 41]. Most uses also break the images into patches and regard them as
patch-based RCNN (PB-RCNN), Sharma et al produce a PB-RNN that correctly classi-
fied land cover with 97.21% accuracy compared to NN with only 64.74% accuracy with
the speculation that CNN could prove to be better in future work[52]. It is also interest-
ing to note that the patch based method was more accurate then pixel based methods.
As the next time step image used is key to training and cannot be avoided if there is
too much cloud coverage, some papers choose to avoid training on the areas within the
image with clouds. The main disadvantage of RNN is their long training time as each
time step must be calculated consecutively therefore parrelisation can not be used. Fur-
thermore RNNs suffer from vanishing gradients, as each time step increases the problem
is amplified during back propagation.

2.10 Long Short Term Memory

Long Short Term Memory, or LSTM, are an architecture based on RNN and thus are
able to handle spatial temporal data. LSTM’s were developed to overcome the vanishing
gradient problem produced by a RNN , however they encounter a similar problem when
used on a long chain of temporal data. The vanishing gradient problem refers to a
gradient becoming too small, therefore not contributing as much to learning, when back
propagating. This can be understood as RNN having short term memory as information
in earlier cells does not affect the later stages as effectively as a LSTM. The architecture
of an LSTM consists of multiple cells linked to each other and each successive cell is given
the next time step image and the hidden state. Each cell dictates what information is
retained and passed onto the next cell through multiple gates; input, output and forget
gate. The input gate dictates the information to retain from the previous cell, forget gate
controls the information to remain within the cell and finally the output gate decides on
what information to pass onto the next cell. The key here is that a hidden state passed
from each cell acts as the long term memory and the cell state which is computed using
the hidden state acts as short term memory. As with most research conducted with multi
temporal images there are a multitude of papers conducted on land classification using
LSTM’s[18, 28, 49]. LSTMs unfortunately, due to their many gates and the passing
of a hidden state, have remarkably more parameters then RNNs[40]. That being said
LSTM’s benefit in higher accuracy as well as being able to identify cloud coverage or
ignore it more easily by removing it via the input gate[40]. LSTMs have also been used
in pan-sharpening[58, 61].

2.11 Transformers

Transformers were introduced in 2017 by Vaswani et al which makes them more state of
the art compared to other architectures[60]. The original paper focuses on translating
between languages and therefore it is the example I will use to explain transformers,
afterwards moving onto papers that use similar techniques on multispectral images. As
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Figure 2.6: Transformer Architecture. Taken from [60].

shown in figure 2.6 we start the process by input embedding. Input embedding is the
mapping of a word to a vector where similar words are closer together, the vector space
that words are mapped to is called the embedding space. Afterwards we apply a position
encoding, depending on where the words appear in the sentence. This ensure that there
is context for each word regarding the meaning and position. Next the main and key
part of transformers is the multi-head attention. Attention draws focus to how relevant
each word is in the sentence compared to each other word in the sentence; capturing
contextual relationship between each word in a sentence. As each word may focus on
itself there are multiple attention vectors averaged as the goal here is to draw context
between words, hence the name multi-head attention. These attention vectors are then
passed into the feed forward network, as each vector contains the context and positioning
independent of the previous we can parallelise the process. The entire block is known
as the encoder and the output is a set of encoded vectors for every word. Similarly the
decoder starts by embedding and positional encoding the other language words. Next is
a masked multi-head attention layer. To be able to learn the next word in translation we
want to use the entirety of the first language sentence but only the previous words of the
new language otherwise no learning would take place, that is why there is a masked layer.
The information from the encoder and masked attention is then fed to another attention
layer that produces similar attention values for each word in both languages. Finally
we pass the information through a NN which transitions to a linear layer with all the
words in the second language and a softmax layer to give each word a probability. The
biggest advantage of this method is the computation complexity is drastically reduced
with parallelisation and the paper found it to be more accurate than state of the art
techniques at the time[60].

As this method was developed for natural language processing the architectures
used for multi-spectral classification are amended versions. There are a multitude of
versions that exist but the key factor that they all aim to integrate is the attention
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mechanism. Rubwurm and Korner use only the encoder from the transformer for crop
classification[50]. Naturally they remove the word embedding and keep the positional
encoding. They introduce L transformer blocks consisting of a multi-head self attention
and multiple dense layers of a feed forward NN. In the paper, 8 such L blocks are used
with the architecture ending in a max-pooling and softmax layer. When evaluating the
self-attention scores in the model they found that they focus on distinct events, regard-
less of the input of the input time series data. They found that the each layer focus
on different parts of the time series data and due to all of this the model is regarded
key to suppressing ”non-classification-relevant cloudy observations”. Furthermore they
concluded that there is an increase in separability between classes for each successive
attention layer. Finally comparing the architecture to convolutional models Transformer
and LSTMs produced the best results showing promise in future work. More recent papers
using multi-model self attention networks provide a promising future for self-attention
mechanisms[19, 64, 68].

2.12 Towards Human Centered and Responsible In-

novation

This research is conducted in partnership with the Engineering and Physical Sciences
Council(ESPRC). One of the motivations behind this project is to explore and use re-
sponsible innovation ideals and conduct it with a Human Centred Design(HCD) approach.
The key ideas behind both standards is to find a more suitable and sustainable approach
to conducting research and developing tools.

2.12.1 Human Centred Design

In a Human Centred Design (HCD), we expect the human being to handle the qualitative
subjective judgements and the machine the quantitative elements forming a symbiotic
relationship. Furthermore the design should support human skill and ingenuity rather
than solely focusing on machines trying to objectivise that knowledge[12]. This paper in
a certain regards already follows that philosophy; in the goal to create a tool that utilises
professional users skill to label feature extracted by a machine.

2.12.2 Responsible Innovation

There are many responsible innovation frameworks for software development. As this
project looks to implement AI methods the Artificial Intelligence and Public Standards
by the committee on public standards and life will be used[44]. They have evaluated four
key principle Fairness, Accountability, Sustainability and Transparency. Each principle
will be explored in this section apart from fairness as this is for processing social or
demographic data pertaining to features of human subjects.

Accountability

The committee discuss who is ultimately accountable for the decisions that an AI makes.
They recommend that AI should be ”human-centric, uphold human agency and respect
human autonomy”. In essence the AI should be a support tool in decision making to
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achieve full human responsibility. This principle coincides very close to HCD and as dis-
cussed before this project specification and research has been closely designed to achieve
that goal.

Sustainability

The end goal of this research is to geo-generalisable model that can track features of
coastline around the world. With the temporal aspect this model would have to constantly
update to accommodate new features and to be reliable and robust methods that can do
so should be taken into consideration. In addition being a critical system for shipping
routes the model should always stay to a high level of accuracy with a measure to indicate
if not.

Transparency

Transparency could be considered the most important principle for this research. The
end user must be able to discern why the model has labelled a specific piece of coastline.
The understanding of what the model is doing would allow the end user to accommodate
or look to change to model in different scenarios. This specific goal of understanding
black box models is its own major section in research. Black box models are opaque
with the decisions process made between the input and output, which pertains to most
AI models. Algorithms like Random Input Sampling for Explanation(RISE) produce a
saliency map by perturbing an input image with multiple masks to see what features
affect each classification[46]. RISE falls into the category of model agnostic algorithms
as only the input needed to produce an understanding. Other methods such as Layer
wise Relevance Propagation(LRP) looks to achieve a similar goal however uses a form of
back-propagation on the model itself to achieve an understanding[4].
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Chapter 3

Pipeline Architecture

There are three main parts to the pipeline; preprocessing the data, reducing the data to
latent vectors via AI methods, and finally reducing the latent vectors to two dimensions.
The techniques and algorithms presented in the literature review are the main methods
for dimensionality reduction that will be explored as part of the pipeline.

Figure 3.1: Pipeline of the process of initial input to 2D plot using an AE.

3.1 Exploring the Dataset and Preprocessing

This segment will briefly revisit the different bands and resolutions that the data is
comprised off; whilst discussing the limitations that come with such large datasets. As
discussed before Sentinel 2A, data comes in 3 varying spatial resolutions; 10,20 and 60m
represented per pixel. As each wavelength needs a different length of time to be recorded
by each sensor we find that smaller bands are recorded in a higher resolution. The smaller
bands carry more information as their wavelengths are so short. In the 10m resolution
contains the following bands; blue(458-523nm), Green (543-578nm), red(650-680nm) and
NIR (785-899nm). In addition to the 10m resolution bands 20m contains 3 red edge bands
(698-713nm, 733-748nm, 773-793nm), 2 SWIR bands (1565-1655nm, 2100-2280nm) and
NIR narrow (855-875nm). The lowest resolution, 60m, contains all the bands available
in both 10m and 20m resolutions.

The data ranges play a key role in deciding the methods and algorithms used when
preprocessing the data or constructing the AI architectures. As shown in figure 3.2 even
though 50% of the data is within a tight range, as shown by the blue bar, the maximum
values can be considerably larger. This poses a challenge when looking to normalise the
data into a range that an AI architecture could run optimally on. Normally a range of zero
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Figure 3.2: Simple bar chart showing the different Bands and their corresponding values
as minimum, maximum ,mean and standard deviation.

to one or negative one to one is used. The use of normalising boasts two main benefits,
firstly the calculation is performed on smaller numbers allowing for faster computation
and secondly activation function commonly lay within those ranges allowing the values
to propagate further into the network. Considering these factors normalising would be
ideal however doing so with such large ranges present in the data creates very small
values, below 0.001, once normalised. This poses a problem as such small values do not
propagate efficiently through the model. Likewise the cost function has to be to be able to
handle extreme values, for example Mean Squared Error (MSE) on two values in decimal
points would produce an even smaller value. Therefore a more optimal approach would
be to standardise the dataset by calculating the mean and associating each value with
the standard deviation from that mean. Standardisation still produces extreme values
however less so than normalising as the data is no longer trying to squeeze the dataset
into the range from negative one to one. The more extreme values from standardising
would hope to be captured as a feature in the first layer of the AI architecture by passing
it through a convolution before any activation layer.

Figure 3.3: Pixels with large values from the blue spectral band with 20m resolution.

The second option would be to consider the large data values as outliers and restrict
the input values to a suitable range. Most of the large values are from commercial areas
where reflectance is high. As shown in figure 3.3 the highest value is not a discernible
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location in a field however there are other values similar to it in both land patches and
near the coastline where there are built up areas. Important to note that each band
has shared pixel with large values. The information gained from these pixels could be
attributed to learning features where there are large amount of buildings. By reducing
their values it may affect the features learnt, however, would optimise the training as
mentioned before. It would be interesting to compare both results with and without
large values to see the effect for each model.

The 10m resolution would have been perfect as it contains the most information for
any value. That being said, with the limitation on hardware only having 16GB only 4
images can be loaded into memory. Therefore the main resolutions used are 20m and
60m. That being said there are further limitation, such as producing patches with a
small stride length. When utilising 20m resolution images having a patch length of 60
pixels and a stride of 30 pixels unfortunately easily hits the edge of memory capacity.
The main datasets used in this project therefore use either one or more 60m resolution
images depending on the stride and 20 or less 60m resolution images depending on the
stride.

The choice of using patches is mainly stems from previous literature and hardware
limitations currently present. Patches are the main method used when detecting crops,
vegetation or other classification problems present in the literature as they show better
performance and allow for sub-regions to be classified. Even though coastline detection
for a critical system needs to be somewhat pixel by pixel classification, this project will
look to see if building on the methods used could be beneficial. In addition the use of
patches for this project increases the overall available data to train on and gives the basis
for detecting coastline either present or not in a patch. Patch size also is key as a CNN
would learn on the pixels surrounding neighbour hood based on the masks size. If the
patch is too small the CNN would not be able to recognise the information. Likewise
if the patch is to large it may incorporate too many features causing more complicated
models.

3.2 Different Models

Different models have different interactions and limitations when considering the latent
features extracted. This section will briefly explore the different issue with implemen-
tation and how each latent feature is extracted. We want AI models to extract latent
features as simple processes such as PCA or early feature extraction shown in literature
does not produce complex features. The papers referenced here are centred towards the
techniques rather than the domain of multi-spectral imaging.

3.2.1 Auto-Encoders

AEs are fairly simple in explanation and as explored in the literature the goal is to
create and encoder to extract latent features and a decoder to generate images from
those features. The cost function is the difference between the two values inputed to the
encoder and output of the decoder. As for the specific implementation many parameters
need to be considered such as each convolutional layer; the kernel size, number of kernels
or activation. The number of kernels dictates how many different filters the network is
to learn and optimise in that particular layer. The kernel size dictates the neighbouring
pixels considered, having a large kernel size increases the information of neighbouring
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pixels recorded. The main process that ties the layers to each other is max-pooling for
the encoder; taking the maximum value given a kernel size and therefore reducing the
size of the input. Max-pooling introduces translation invariant features whilst reducing
the image size. At each successive layer we want to reduce the kernel size and features
as max-pooling starts to converge these features into higher level representations. Most
importantly reducing to higher level features allows for a lower number of dense layer
neurons. For example, take the final layer of a encoder to have 6 kernels each with a size
of 3 ∗ 3 this would result in 6 ∗ 3 ∗ 3 = 54 once flattened. The decoder takes a similar
approach however mirrors the encoder architecture. The goal would be to tweak each of
these values to try and find the least number of neurons in the dense layer whilst keeping
the highest accuracy. This method ensures we have features that strongly represent the
data whilst keeping the number of features low to aid in dimensionality reduction. The
latent features would be the values from the dense layer. As the decoder layer is a mirror
image of the encoder to output the same dimensionality as the input there are limits to
the neurons in the dense layer. Taking the example from before if the last layer in the
encoder is 6∗3∗3 the first layer in the decoder would also have to be 6∗3∗3 which means
that the dense layer would have to be of a multiple of nine as 3 ∗ 3 = 9 with arbitrary
feature maps. From there we can extract the same amount of feature maps as before
which was six.

3.2.2 LSTM

Quickly reviewing the process of an LSTM, there are two main outputs the hidden state
and the cell state that are passed from each LSTM cell. LSTMs are more complex and
better form of RNN which are used on time series data due to their ability to hold
information from more previous time states as they have a hidden state passed from each
cell. The quickest implementation of such a method would be to have the same number
of parameter input as the image with channels. For example if the patch was 30∗30 with
5 bands we would have a 30∗30∗5 = 4500 input parameters as a classical LSTM expects
a 1D input. As the nature of an LSTM is towards time series prediction the patches
would be organised by N features in T time steps. In total if there was 3 time steps for
each image the input would pass three image patches as one sample.

Figure 3.4: A simple LSTM that takes segmented patches at three time steps t to predict
the final time step t4.

There are multiple different methods for extracting the latent features with LSTMs.
The first being inputting a series of time step images and allowing the LSTM to predict
the next image in the sequence, see figure 3.4. The idea being that if the next image
predicted is accurate enough there is an assumption that the architecture has learnt

19



significant features. This process is extremely simple and naive however explains the
methodology behind an LSTM.

The more complex image prediction methods take into account the need for a two
dimensional input, as stated before LSTMs are more adept at 1D input and the input has
to therefore be flattened. Convolutional LSTM or ConvLSTM is designed to overcome
this proposed by Shi et al[66]. In a ConvLSTM the matrix multiplication normally present
in an LSTM cell is replaced with a convolution operation. This convolution operation
preserves the input dimension rather than flattening it to one dimension. This has already
been used in research for predicting satellite images[39] or classification[27, 57].

Most of these approaches stack multiple ConvLSTM layers. This approach much like
a NN or CNN allows for the output from one layer to allow deeper feature extraction in
the next layer. However unlike taking the output of one layer the multiple time steps
make the process a little more complicated. Each time step output is also an input to
the corresponding time step in the next layer. With the addition of the final output of
each layer passed to the first in the next, as shown in figure 3.5.

Figure 3.5: LSTM stacked with two layers. Each time step output is also an input to the
corresponding time step in the next layer. With the addition of the final output of each
layer passed to the first in the next.

Figure 3.6: An example of an AE that utilises LSTMs to produce the latent features.
Taken from [54]

The ability to stack layers provides the creation of more complex architectures such
as a AE with LSTM units. Shen et al do precisely that by producing a more complex
model to find latent features of traditional Chinese music, with the intent to map into
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a two dimensional interface[54]. They apply a LSTM encoder and decoder model with
stacked layers; the two layers reduce the features by limiting the output of the cell state
at each successive layer shown in figure 3.6. The first LSTM layer takes 160 input and
produces 96 and likewise the final layer takes 96 and produces 16. The final 16 outputs
are the latent features; notice that the input sequence for the final layer in the encoder
has not fed each time step sequence however only the final output. The decoder mirrors
the encoder as seen before with AE.

Figure 3.7: The architecture of MusicLatentVis. An AE and LSTM AE are used in
unison to produce the final latent vector space. The LSTM AE further reduces the latent
features produced by the AE. Taken from [54]

The full solution in the paper also utilises an fully connected AE wrapped around the
LSTM AE, see figure 3.7. The purposes of the AE is to reduce the initial 501 ∗ 1 to the
latent features that are parsed to the LSTM AE. Also interestingly both latent vector
from the AE and LSTM is combined to produce the final feature space. This method
not only follows the pipeline proposed by this project but also allows training without
the need for pre-labelled data. Adapting this solution to fit the current data would not
require a ConvLSTM as the latent features are represented by vectors in the dense layer
of the AE.

3.2.3 Transformers

“Attention is all you need”![60]. The transformers main component is attention and this
segment looks at the different architectures present that incorporate this feature. As
attention is about embedding the data into a new feature space therefore the architec-
ture for most models remains similar to the current approaches. The process of adding
a multi-head attention layer to each layer of previous methods could be the simplest
implementation including attention into the network. This approach is taken by Choi et
al where the AE architecture has a multi-head attention mask before each layer in the
architecture apart from the dense layer[11]. The main feature that changes is the self
attention is relative as the domain is for melody and performance of music sequences.
Relative self attention is described by Shaw et al however they note that for convolu-
tional architectures positional encoding is inherent with a kernel however still benefit
from positional attention encoding[53] as shown by Gehring et al [20].

Gehring proposed a encoder decoder architecture with the following position embeddings[20].
Firstly the input is embed into a distributional space, input x = (x1, ..., xn) to distribu-
tional space w = (w1, ..., wm). The absolute position is also embedded p = (p1, ..., pn)
with both combined being e = ((w1 + p1) + ... + (wn + pn)). In terms of the current
papers problem space the positional embedding would allow for smaller patches as each
has the relative absolute position to each other; the end goal being a pixel by pixel
identification and feature extraction. Therefore we would not have to worry about losing
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positional information because the convolutional kernel is too small, however the textural
information would be lost as that is contained within the kernel. There are even more
complicated auto-encoder models present in the literature that could warrant exploring
in future work[33].

3.3 Reducing Latent Features

Even though using the AI models described above to extract features, there is still a need
to reduce further to two dimensional plots for exploration. That is why this segment
looks at different methods to reduce the dimensionality further.

There are two main methods to explore when reducing features, the first being Princi-
ple Component Analysis(PCA)[1] and the second being T-distributed Stochastic Neigh-
bour Embedding(T-SNE)[35]. Both methods aim to transform and project the data into
a n-dimensional space, in this case n is two. Not only does this reduce the complexity
of analysing multiple features but also allows for the creation of a tool that is easily
interpretable by humans.

PCA takes the covariance matrix of the entire dataset showing the positive or negative
trends of each feature compared to one another. Secondly eigenvalues and eigenvectors
are calculated based on the covariance, eigenvectors define the direction of the axis of a
particular feature. The eigenvalue if the factor at which the eigenvector is scaled of the
spread of the data along the axis. If the largest two eigenvectors are chosen then we have
two axis that incorporate the largest spread among both axis. Simply from here we can
transform our original data into the new two dimensional space. The produced result
in simple terms is to keep dissimilar points as far apart as possible. However PCA is a
linear method and has therefore disadvantageous in this use case as latent features are in
nature non-linear.
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exp(−||xi − xj||2/2σ2
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T-SNE on the other hand is a non linear method that takes into account the local
relationships between two points using probabilities. Firstly in the original high dimen-
sionality, latent features, we want to find the probability of each point to its neighbours.
This is shown by equation (1) above. The probability is fit to a Gaussian distribution the
i in σi denotes the perplexity, the amount of neighbouring pixels to compute. Limiting
the neighbours negates some points from having disproportionate distribution. Secondly
to map the points into the lower dimensionality, the two dimensional interactive plot
space, the points are once again mapped to a distribution. Equation (2) is a Guassian
version of the high distribution used for the lower feature space. It is not used in by
t-SNE as a it squeezes the points towards the end of the distribution. This squeezing is
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more apparent in the lower distribution as the space of points is squashed from the high
dimensionality. Instead equation (3) is used a Student-t distribution with one degree of
freedom. Finally equation (4) shows the cost function as the method uses gradient decent
to settle the data points into an optimal space. The downside to this method is that if
new data was introduced the whole process would have to be run again as there is no way
to map new data into the same space. As there are so many computations the method
would take significantly longer than PCA to run.
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Chapter 4

Experimental Results

Figure 4.1: Image of the area used in testing. The area includes the city of Tarragona
and the surrounding area from the east coast of Spain. Sentinel granule number 31TCF.

Only one granule, or tile, has been used for the experimental results. The processing
power and hardware requirements limits the data used and due to Coronavirus access to
resources has been limited. The tiles used is from the east coast of Spain. The choice was
made mainly as the region has one of the lowest cloud coverages year round. Additionally
the patch coastline has varying features including a coastal city and harbour.

The main method for testing has also been limited to using AE as more complicated
models proved to be too resource intensive. The results look to find a preliminary view
of the pipeline and what research questions arise.

4.1 AutoEncoders Model

For the autoencoder using the full range of bands in the data, 20m resolution, the following
architecture,figure 4.2, produced interesting preliminary results. A single image from the
20m band was used. The encoder reduces the features down to 300 in the dense layer.
The max pooling has to be chosen carefully to result in integer numbers, which in a usual
CNN is not a problem, as during the up-sampling the data needs to be able to retain the
shape. The use of reshaping the features after each layer in the decoder could be used
to ensure the correct dimensions however that would allow for some loss of information
with blank pixels introduced at each reshape. The patch size was specifically chosen to
be just large enough to identify the features by eye for understanding the results when
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Figure 4.2: AE Architecture for patches size 45x45 with 5 channels.

comparing within the two dimension plot. The second reason for larger patches was once
again due to hardware limitation. Having smaller patches with stride greatly increase the
memory requirements, however smaller patches is something that the model will work
towards in the future.

Figure 4.3: A single patch showing the input into the encoder(top row) and out-
put(bottom row) for each band.

The AE is not fully optimised, figure 4.3, and could in the future produce much
more high fidelity images given longer training times or more complex architecture. The
current output however provides interesting results regarding feature reduction and is
why it has been kept. The outputs resembles a blurred version of the original image with
a tendency to highlight large values. The subtle differences in pixel intensity from each
band is shown to somewhat be kept consistent with the output.
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Figure 4.4: t-SNE applied on the 300 features.

4.2 Two Dimensional Plot

As for dimensionality reduction on the 300 features present in the dense layer PCA
produced very poor results with a condensed plot which was hard to discern much of the
information. T-NSE however provided a more human interpretable plot as it has more
spread and shows signs of some early clustering.

Figure 4.5: t-SNE applied on the 300 features with an colour coding to represent the
water content in the patch.

As shown in figure 4.5 we can see with the help of colour coding the patches with
NDWI index that the patches have clearly clustered depending on the water content. The
larger water content patches have clustered and distributing outwards from the cluster
is a gradient of lower water content. It is important to note that larger water content
is not indicative of purely large bodies of water present in a patch; there are patches
of agricultural land that are within the 90% − 100% water content, see figure 4.6. This
shows that either the model is taking into account water content as a feature in the dense
layer or most likely multiple features or contrarily the water content may be a symptom
of different features found solely in those areas. Figure 4.6 shows patches sampled from
each band of water content starting from 50%to100%.

As there are no professionally labelled data sets available a mask had to be created
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Figure 4.6: t-SNE applied on the 300 features with an colour coding to represent the
water content in the patch. Top row represents patches from 50% to 60% with each
subsequent row in the next 10% category.

Figure 4.7: The mask applied to extract coastal patches. Note it is not accurate and
overlaps both land and water that may not be considered coastal features.
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manually. The mask follows the coast however encompasses the surrounding land as well
as the water to give a general area representation, see figure 4.7. This allows the results
to be filtered to show just the patches that are near the coastline and to show if we can
extract any trends or patterns in the two dimensional feature space.

Figure 4.8: Data points in red show the coastline patches. The plot is the t-SNE embed-
ded space of points.

Figure 4.8 shows the data points of patches that overlap with the mask. Intriguingly
the features are more spread out and not within the predicted water content region.
This is most likely due to the inherent complexity of the problem; there are a significant
amount of coastal features that are similar to land. A method used to try and overcome
this problem is to use the NDWI as a parameter when training the model. The hope
would be that the model learns features that a closer to water. However as seen with
figure 4.6 the water content might be misleading. Another approach is using the positional
encoding introduced by transformers. Possibly adding an absolute positional encoding as
well as the a positional encoding for the nearest water source.

Even though the image does not show a clear clustering of the data for coastal features
there may be a few sub clusters present. To find such clusters HDBSCAN was used to

Figure 4.9: Clustering coastline data points. The legend shows the largest cluster colours
in descending order.
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Figure 4.10: Patches representing each cluster, the highest cluster in the top row. Each
row representing smaller clusters. Same order as the legend in figure 4.9.

find inherent structure within the plot. The results of clustering, see 4.9, shows eight
such clusters with a minimum of five points assigned to each cluster.

The largest two clusters, refer to figure 4.10, contain mainly land with built-up areas
and the second with the addition of more water. The rest of the clusters contain what
looks to be grainy images but is sand features that gradually transition to water. The sand
coastal clusters don’t seem to present any other distinctive features even when looking
at more than 5 samples.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Even though due to hardware limitations there were some initial results that were promis-
ing. The pipeline proves to be effective at extracting features and grouping the data,
however when it comes to coastal features the complexity of the problem solution re-
quires further attention and detail. Other potential additions to the pipeline have been
found and would look to be considered in the future.

5.2 Future Work

The current experimental results look promising when considering applying more com-
plex architectures such as the LSTM or Transformers self attention as discussed before.
LSTMs may provide a much needed temporal feature extraction as coastal regions change
periodically with time and could be captured as a feature. In addition adding a positional
encoding to the data could allow the network to learn features that overlap in patches.
One of the key experiments to run would be to reduce or enlarge patch size. Smaller
patches may present unique features that may not be extracted by larger patches; if the
patch is small enough to only contain sand or the edge of a harbour it may provide more
detailed features. Smaller patches would also alter the architecture of the model as not
as many layers would be needed, limitations on down-sampling. Larger patches may
introduce more complex features, it is very dependent on the problem and need test-
ing. In addition decreasing the stride would allow for more detailed feature extraction
rather than capturing only a segment.The project aims to achieve explainable black box
models and should therefore in the future utilise explainable AI techniques discussed to
understand the output for both the architecture and experts opinion on if its a suitable
model. As the final goal is to get a pixel by pixel extractions of coasts in a global con-
text the model must be applied to much larger quantities of images, rather than the one
tile used currently. The effect of increasing the observed region increases the number of
features and therefore the depth of the architecture used. The many avenues to venture
in future work are mostly with optimising the dataset and AI architectures with more
computational resources.
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