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Abstract

Interactive Reinforcement Learning (IRL) is a machine learning technique which

incorporates a human-in-the-loop training approach. The IRL agent learns from human

provided feedback, which can be delivered through several different forms, for example,

scalar value rewards. IRL has been proven to be a valuable training method for agents,

demonstrating faster learning times and decreased exploration. However, much of the

current research has been constrained to limited, discrete environments, where agents

have few possible actions to choose from in a given state. It is also known that there

are certain limitations or hindrances associated with IRL; for example, agents are

susceptible to learning human biases. This project investigates the effects of IRL in

a larger environment, formalised as a Partially Observable Markov Decision Process

(POMDP). A pre-trained RL agent was subject to an extra layer of training, in which

participants of a user study were asked to observe and provide feedback to the agent

following each action that was taken. Once training was complete, users interacted with

both the RL and IRL agent whilst performing the same task. Results show that the

IRL model outperforms the RL agent, confirming that a combination of both human

and environmental rewards may be of value for complex, real-world environments.

There is also evidence that the IRL training effected the state-action space of the

model, improving overall task strategy. Future work intends to investigate the effects

of human biases.
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1 Introduction

1.1 Project overview

Interactive Reinforcement Learning (IRL) is a subsection of Machine Learning algorithms

that feature a human-in-the-loop dynamic to their learning processes. Similarly to Reinforce-

ment Learning, IRL architecture includes an environment, an agent, states and actions and

finally a reward function. Additionally, IRL integrates feedback provided by a human, often

an expert in the context of the environment that the agent is learning within. There are

number of ways in which a human can provide feedback to the agent in an IRL environment.

These come in forms such as; binary critiques, scalar values, guidance and action advice [1].

Research has found relevant applications for IRL such as robotics [1,2] and gaming [3,4].

IRL is also thought to be highly applicable to the HCI field, with research in areas such

as social robotics [5]. Cruz et al found that much of the IRL research carried out in HCI

focuses on the improvement of algorithm performance, whilst the quality of the interactions

are rarely evaluated [1]. The transfer of human knowledge to an agent, through the means

of rewards, or other forms of guidance, is an important part of learning; particularly in com-

plex environments, where the human interactions come from experts of that environment [6].

IRL has also been used in an attempt to speed up training times; RL agents often work well

but require large amounts of time and data to begin showing good performance levels [6].

Through an evaluation of Interactive Machine Learning systems (IML), Boukhelifa et al.

found that human-centred design and evaluation were also imperative in the addressing of

black box issues that are often present in machine learning models [7].

Agents that learn in an environment which utilises human feedback, such as IRL, are

susceptible to learning a human’s inherent bias. This bias is caused by a person’s mental

model of the task or environment that they are providing feedback in. A mental model in this

context, is a person’s internal representation of the task based on their experiences of it in

the real world [8]. Human bias can be transferred to an agent in a number of different forms,

such as reward bias and preferential bias. Reward bias is the tendency for a human teacher to

provide an agent with an inflated (more positive) reward, in an attempt to motivate an agent

to learn [2], much like how teachers motivate human learners. In this project, preferential

bias is defined by a human’s preferred strategy to complete a task. For example, if an agent

learns how to play a game from a human teacher who plays the game one specific way each
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time, this is a preferential bias to that strategy.

1.2 Problem

The use of Reinforcement Learning (RL) in domains such as robotics has seen success [6].

The problem is that the process of training an RL model is often lengthy; requiring huge

amounts of time and data before reaching a good performance level. The introduction of

human feedback has been shown to enhance, and often quicken, the training process. This

is ideal for agents learning in a larger, potentially complex, environment, as its training can

be supplemented by human expert knowledge through a series of interactions. The success

of IRL has been proven, but often within constrained environments [6], such as when there

are a total of four possible decisions (or actions) to be taken by the agent at any one time.

1.3 Project Aims

This project aims to:

• Present the reader with an understanding of the different types of bias which may be

present within a machine learning model.

• Establish the effect of human feedback on an agent’s performance within a larger

learning environment; directly addressing one of the current limitations in research in

IRL.

• Provide foundational work with the notion that this will then be carried forward into

future work.

1.4 Research Questions

This project will address the following research question:

RQ1: Does the addition of interactive reinforcement learning improve training and model

performance?

1.5 Approach

In order to address the research questions outlined in the previous section, this project will:
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• Discuss the effect of bias in ML models through a comprehensive literature review

around the topic of bias and current work in the effort to mitigate the effects. Partic-

ular attention is paid to reward and preferential bias which can be a result of human

feedback in IRL models.

• Design and implement a system in which a Reinforcement Learning model is trained

to play the game of Battleship against a human opponent. This is done prior to any

human interaction and is trained to play an optimal game (to sink all opponent ships in

the least amount of moves). During a lab-based study, users are asked to play against

this model, on a simple interactive GUI. Following this, the users are then asked to

participate in an extra training process for the model. Whereby, they observe the

model’s moves and supply it with scalar value rewards; based on how they believe it

performs at each step. Once the model has been trained by all those participating in

the study, the users then play a series of complete games against the new model. The

performance of the model prior to training with human rewards (referred to as the RL

model) is then compared to the one which has trained with them (referred to as the

IRL model). The results are then analysed in order to determine the effects of human

feedback.

1.6 Outcomes

A total of 100 complete games were played against both models; which involved 20 users

playing five games per model each. The IRL model received training from each user across a

complete game (with no opponent) and received on average 95 rewards per training iteration.

A brief comparison of model performance metrics show that the IRL model achieved the

lowest average moves and the highest win-loss strategy. Meaning, on average, the model

with human-inputted feedback, won more games in less moves. A more in depth analysis of

these results can be found in Section 7 of this paper.

This study is intended to be used as the foundational work for the purpose of testing

designs and interfaces with users; future work will then seek to analyse the effect of different

models on the user experience. Including an investigation into how bias may effect the user

experience.
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1.7 Document Overview

The remainder of this document is divided into the following sections:

• Section 2 Literature Review. Discussion and analysis of current research material in

the area.

• Section 3 Project Plan. Outlines the timeline of the project.

• Section 5 Design. System description.

• Section 6 Implementation. Description of implementation.

• Section 7 Results. Discussion and analysis of results.

• Section 8 Future Work. Presents potential direction of future work.
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2 Literature Review

2.1 Reinforcement Learning

2.1.1 What is RL?

Reinforcement Learning is a machine learning technique in which an agent learns how to op-

timally complete a task within a given environment. Learning is achieved through a series of

interactions between the agent and the environment. The agent performs actions (A), which

cause transitions in the environment’s state (S). Following each action, a reward (R) is given

to the agent. The reward represents the quality of the interaction, if the agent performed a

”good” action it will be rewarded positively, thus reinforcing this kind of action in similar

states in the future. Put simply, the agent learns which actions result in the highest rewards.

RL was first defined in research originating from psychology and operations research [9], the

computational techniques used today are a product of that work.

The RL framework is displayed in Figure 1 which describes how the agent and environ-

ment interact through the medium of actions and rewards [10].

Figure 1: Reinforcement Learning Framework

2.1.2 Current Applications and Challenges

In recent years, reinforcement learning has achieved much success across a plethora of appli-

cations; from domains such as robotics [11–13] and gaming [14]. These applications are often

limited to a small state-space. However, with advancements being made in Deep Reinforce-

ment Learning (DRL), this machine learning method is beginning to show success within

larger, more complex environments [14].
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Mnih et al presented the first DRL model that successfully learned a policy to compet-

itively play Atari, the model would go on to outperform human experts [14]. Lillicrap et

al explored the application of DRL in continuous action spaces, showing their work suc-

cessfully learned how to solve multiple physics based problems, sometimes only from pixel

inputs [15]. These two papers were the first to see a significant breakthrough in DRL re-

search, showcasing the versatility of these algorithms. However, there is one major setback

that is restricting reinforcement learning from being employed in wider domains and that is

the lack of safety-criticality. Safe reinforcement is a subsection of research in its own right,

that is beginning to explore methods and techniques to ensure safety within systems [16].

Brunke et al outlines in depth the work that has been produced in this space, providing

summaries of promising work in the attempt to achieve safe RL. One of the main road blocks

is finding a way for the RL agent to safely explore its environment [17]. Exploration is a huge

part of the learning process, choosing actions with unknown consequences is where the risk

comes from, but also where the learning takes place. Current examples include restricting

exploration to groups of policies that are guaranteed to be safe [18]; this work is confined to

discrete state-action spaces. Proving again the challenge of RL in real-world applications.

Other issues preventing the extension of RL uses is the black box issue of the models [19].

The black box phenomena leads to unpredictable behaviour, which is not ideal in a safety

critical system.

2.1.3 Biases in RL

The previous section outlined current successes and challenges associated with implementing

reinforcement learning methods in real-world applications. There are many more setbacks

to address on the topic, however, this review aims to highlight the main ones, which leads

ultimately to bias. Bias in reinforcement learning methods often negatively affect algorithm

performance and as previously mentioned, prevents RL from being safety critical. The cur-

rent work addressing this issue will be discussed.

Villaflor et al conducted a study which aimed to address the issue of optimism bias by

creating methods that allowed, at test time, a search for policies that appear robust to mul-

tiple possible futures. Optimism bias is a product of an agent’s incapacity to understand the

effects of a policy and world dynamics due to the relationship it learns between actions and
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rewards. This optimistic behaviour can be dangerous in safety critical environments [20].

Their approach was an offline RL method and results from a simulation of an autonomous

vehicle proved superior to other techniques.

Primary bias is another significant challenge that arises during the training process.

Nikishin et al describe this bias type as the agent’s tendency to begin overfitting on early

experiences [21], which effectively damages the rest of the learning process. Overfitting at

an early stage is an issue that primarily arises when a model learns from a large dataset.

Given that the advancement of reinforcement learning depends upon the ability to tackle

increasingly larger problem sets, mitigating primary bias is going to be a necessity. The

proposed solution in this paper is a simple one; to intermittently reset part of the agent

during training. It is demonstrated through a number of experiments (and thus, domains)

to be an effective method, showing improved performance. This technique does come with

potentially unwanted effects though, such as a brief drop in performance after the reset.

The technique itself is simple, but drops in performance are likely to result in learning

inefficiencies. Reinforcement learning is already renowned to be extremely time-consuming,

however, it is pointed out that a potential future for this method could lie with using RL

feedback to optimise the resetting parameter.

2.2 Interactive Reinforcement Learning

2.2.1 What is IRL?

The main goal of IRL is to offer a method in which humans are able to be kept in the loop

during the training process of machine learning agents. As previously mentioned, results have

shown that the inclusion of humans during the learning stage offers a number of benefits,

namely accelerated learning and increased efficiency. IRL follows a framework [22] which is

depicted in Figure 2. Similarly to RL, IRL still works on the basis of interactions between

an agent and an environment, only now there is a third member, the human. The figure

visualises the interactions between each member as follows:

• The agent takes an action, which is then observed by the human and the environment.

• The environment updates the state and returns this to the agent and the human. The

reader can think of this as the result or consequence of the action.
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• The human then supplies feedback to the agent. Feedback is often a measure of how

”good” or ”bad” the result of the action was.

The above steps are repeated until the training run is complete.

Figure 2: Interactive Reinforcement Learning Framework

A closer look into IRL architecture can be seen in Figure 3, here different reward methods

are highlighted, in addition to human knowledge integration methods. Each method and

type of feedback will have their uses across a number of different applications. The most

commonly used feedback type in reinforcement learning is scalar-valued, this is due to the

seamless transition from environmental rewards (which are also scalar values).

Figure 3: Human Feedback Methods

2.2.2 Current Applications and Challenges

The ability to integrate human knowledge into a machine learning agent is an exciting and

useful prospect. Particular use cases would be those in which humans have an abundance

of expertise and so in turn would be able to guide the agent’s learning effectively. IRL has

been utilised across many domains, similarly to RL, the main fields of research like within
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robotics and autonomous vehicles [23,24].

Koert et al explore the impact of multi-channel IRL; learning from both environmental

and human feedback. The idea is that the human feedback will assist in accelerating the

learning process of the agent (in this case a robot agent) in sequential tasks. The novelty

of this study was the offering of multiple input channels for the users to provide feedback,

across two experiments. The study also provided the robot with a self-confidence parameter,

once this was high enough it would begin to question any human inputs that did not align

with how it was about to act. Conclusions from this paper again call for more thorough

work into how an agent might communicate with human teachers so that trust between the

two can be established [23].

Zhang et al found similar results, showing that both environmental and human rewards

improved performance beyond a single type of reward function [24]. It is important to note

though that these results came from simulations only, future work in extending this into real

world scenarios are required.

2.2.3 Biases in IRL

Biases that arise in human-in-the-loop systems can also impact an agent’s overall perfor-

mance, sometimes with unexpected consequences [25]. Whilst IRL has proven benefits,

designing systems that are resilient to biases that stem from human interactions remains a

real challenge.

The most prominent bias type that has been discovered in IRL is positive reward bias.

The tendency for a human teacher to use positive feedback as a way to encourage the agent

casts certain doubts on the usefulness of human feedback. Thomaz et al found that 69.8% of

the rewards given in their user study were postive. Whilst they believe more work is needed

to investigate this trend, they speculate that it is due to the participants treating the agent

as a social entity that requires encouragement [26].

Chao et al demonstrate the importance of investigating the effects of human-in-the-loop

training. Their study involved the transfer of human knowledge into a robot agent to carry

out certain (simple) tasks. Even though the tasks were within small, defined spaces, a simple
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bias demonstrated by the human teachers effected the behaviour of robot agent as a result.

In one task the agent was taught to move objects from the left side of a table to the right side.

Since the human teachers showed a bias to select the left most object each time, the agent

learned that to complete this task successfully it was to choose the left most object [27].

This was likely an overlooked consequence and relatively harmless in this scenario, however,

with the expansion of environments it is a wonder what long term effects a bias such as this

could cause.

Krening et al explore the effect of interaction design on how humans experience IRL

systems. Their conclusions show that interaction design has quite a substantial bearing on

user experience, which in turn has an effect on the learning process. Since RL algorithms are

mostly probabilistic, effects of feedback are not instantaneous, this led to 20% of their users

feeling frustrated. It was found that an agent who seemed to respond more obviously to

feedback was favoured and perceived as ”more intelligent” [28]. This is an important finding

since it appears there is room here for a human to develop a ”likeness” bias for certain agents

that react in a way they like (even though it may not be the most suitable model). Taking

this further, it may also have some bearing on trust in the system.

To conclude, Cruz et al discuss the idea of safe interactive reinforcement learning, which

may help to solve some of the issues associated with bias in RL systems as a whole. Ensuring

that not only interactions, but outcomes of interactions, are safe for the human is paramount

[1]. It is suggested that this a promising direction of research and potentially a solution lies

here in the quest to employ RL in real-world, safety-critical settings.

2.3 Related Work

Sheidlower et al present CAIR (Continuous Action-space Interactive Reinforcement learn-

ing), the first IRL algorithm capable of outperforming state-of-the-art RL models. The CAIR

algorithm is validated through two simulated robotics tasks, it utilises both environmental

and human feedback to achieve the improved performance results [29]. Sheidlower’s work

is of particular interest as it explores similar techniques that are employed in this project,

solidifying the relevance of this work. In contrast to CAIR, this project looks to question

and explore what direct effects the human interactions cause within the agent’s behaviour.

Kancko addressed the application of solving the game of Battleship with reinforcement
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learning [30]. The paper employs and compares a number of different algorithms (including

those that are not RL models) before concluding that the RL algorithm out-performed all

other techniques. This paper was a good foundation to lay, proving the power of RL within

a POMDP environment.

The following project, although inspired by numerous studies and other external moti-

vations, utilises Sheidlower et al and Kanko’s promising work as direct motivation.
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3 Project Plan and Time Management

In order to manage the timeline and monitor progress of this research, the below Gantt

Chart (Figure 4) was created and adhered to. As the project developed over time, a further

literature review was required in order to keep up to date with the relevant research in this

space. This was the only adjustment, leaving the remaining amount of the available time to

complete the implementation, testing and writing stages. In addition to this, meetings were

held once weekly with the project supervisor.

Figure 4: Gantt Chart
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4 Design

4.1 Introduction to Battleship

Battleship is a two-player strategy game, in which players are tasked to destroy their op-

ponents fleet. The game can be played across a number of mediums; from paper and pen,

to mobile applications. The game board is made up of four grids of pre-defined size, each

player has two grids each. Player’s ships are distributed across the first grid (referred to as

the Ships Grid), these grids must be hidden from the opponent. Enemy fire is also recorded

on the first grid - this allows a player to keep track of how much (or little) of their fleet has

been hit. The second grid (referred to as the Search Grid) is used to track shots fired at the

enemy, allowing a player to track how well they are doing at hitting opponent ships.

Once both players are satisfied with the positioning of their fleet, game play begins. Each

player takes it in turn to fire a shot at the opponent’s grid, at one specific location. The

outcome of the shot is then returned to the player; hit, miss or sunk. The game is deemed

over once one of the players has successfully sunk their opponents entire fleet. There is

always one winner at the end of a game.

There are a number of rules that must be followed before and during game play:

• Ships cannot overlap, or go beyond grid boundaries.

• Ships must be placed horizontally or vertically (not diagonally).

• Ships cannot be moved once game play begins.

• Ships must be placed so that there is at least one grid space between each other.

• Battleship is a turn-taking game. Specifically for this paper, no player should have

consecutive turns, even when the current turn returns a positive (hit).

4.2 System Description

4.2.1 Environment: Board Setup and Game Play

In order to be consistent with the usual setup of Battleship, the grids used are two-dimensional

matrices of size 10×10. As mentioned previously, players are assigned a search grid and a

ship grid. The human player’s view in the context of this project can be seen below in Figure
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5. The left hand side grid is their search grid and to the right is the ships grid, where the

player can see their ships and the opponent’s moves.

In the usual setup, Battleship players have five ships each. The sizes range from one grid

square to five, a player has one of each size. In this design, players have ten ships each and

are denoted by green squares on the grid. The fleet consists of:

• four ships of size one,

• three ships of size two,

• two ships of size three and

• one ship of size four

Figure 5: Battleship GUI

The board consists of three types of grid squares; ship squares, ocean squares and un-

known squares. On the ship grid, the player knows that the green squares are their ships

and the grey is the ocean. At the beginning of a game, before any shots are fired, the player

does not know anything about the search grid - it consists of unknown squares only.

As game play progresses, the search grid will return information to the player. A suc-

cessful shot (the player has hit an opponents ship) would return an orange circle at that

location. A miss shot (the player’s shot landed on an ocean square) would return a blue
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circle at that location. Any remaining grey squares are those that have not been fired at yet

and so do not reveal any information to the player. It is possible to win the game without

searching every grid location, once all ships are sunk, it is accepted that any remaining grey

squares are ocean squares.

4.2.2 Actions and States

Since the grid size used in this system is 10×10, the number of possible moves is 100. How-

ever, upon making a move, the result can return one of two pieces of information; whether

the shot was a hit or a miss. Therefore, the number of possible actions is 200. The number

of possible actions reduces by two every time a move is made.

The number of states that are possible is finite, due to the defined (and fixed) grid size.

Prior to making any moves, the probability of any and all ship placements are possible.

These only begin to change (become more or less likely) upon taking shots (performing

actions). As each shot, or action, taken reveals more information about the grid, some ship

configurations can also become impossible.

4.2.3 Rewards

In both the RL and IRL models, rewards are given per action performed. Rewards are simple

scalar values.

In regards to the RL model, the reward values are as follows:

-1.0 ; given in the event of an invalid action. An example of an invalid action would be

a repeated move (taking a shot at the same grid location more than once). This is

not needed in a game of Battleship, since everything a player needs to know about a

position is revealed within one shot.

-0.1 ; given if the shot is a miss.

0.0 ; given in the event of game over and the result is a loss.

1.0 ; given if the shot is a hit.

The reward values used in the training process for the IRL model are still scalar values,

as previously mentioned, however users are encouraged to use the entire range of numbers
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(to 1.d.p.) between -1.0 and +1.0. This allows the human to provide a more customised set

of rewards. For example, a near miss (a shot fired one square away from an opponent ship)

may be rewarded slightly higher than a miss which was not this close.

4.2.4 Markov Decision Process

In Reinforcement Learning, problems are often formalised as a Markov Decision Process. An

MDP is a finite, stochastic model of a system made up States, Actions, Transition States

and Rewards. They can be defined as a tuple:

< S,A, T,R >

Where:

• S is a set of all possible states (describes the environment).

• A is a set of all possible actions with which an agent can take.

• T (s, a) is a stochastic transition function. Maps probability of arriving at new state,

st+1, from current state st due to taking action a

• R(s, a) is a reward function. An immediate reward, representing an evaluation of the

quality of the selected action.

The above model is only accurate for a system in which the outcome of an action is

known before taking it. Considering this, it is found that Battleship cannot be formalised as

an MDP. This is due to the fact that, until a result is returned after an action is performed,

there is no information about the new state. More explicitly, before taking a shot at the

opponent’s fleet, it is unknown whether it will be a hit or a miss. However, it is possible to

instead formalise Battleship as a Partially Observable MDP (POMDP).

4.2.5 Partially Observable Markov Decision Process

Partially Observable Markov Decision Processes (POMDPs) can be used to model a system

where the outcome of an action is non-deterministic [31]. Figure 6 represents how an agent

interacts with its environment in the context of a POMDP. In order to correctly formalise

the game of Battleship as a POMDP, the introduction of Observations and an Observation

function is required. This results in the 6-tuple:
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< S,A,O, T, Z,R >

Where:

• O is a set of all observations with which an agent may perceive.

• Z(o, s) is the observation function. Maps the probability of perceiving observation o,

in state s.

Figure 6: Partially Observable Markov Decision Process
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5 Implementation

5.1 Reinforcement Learning

5.1.1 Environment

OpenAI Gym is an open source toolkit which offers a standardised framework for developing

and testing RL agents [32]. It is designed with researchers and enthusiasts in mind with many

pre-developed environments to test agents within, saving time on designing the specifics of

an environment. Having said this, the Gym framework is also designed to be extensible;

allowing the creation of custom environments. The gym framework primarily runs on two

methods:

• reset(); this method resets the environment, ready for a new episode.

• step(); this method passes the action that the agent selected through to the environ-

ment. Normally returning a reward, an updated state and other information important

to the environment.

Using this framework [33], a two-player Battleship environment was built. This meant

that the step() method was called every time any player made a move, regardless of

whether it was made by an RL agent or a human player. Of course, the human player

does not require rewards, so based on what type of payer was making the move, the values

returned from this method were different. The reset() not only resets the Battleship

environment, but also randomly places ships for both the human and agent player. Placing

ships is normally a manual task in Battleship, players would complete this prior to game

play. However, for the purpose of training the RL agent, this was automated and each time

is completed randomly (keeping it fair for both the agent and human players).

Two main classes run the majority of the Battleship environment:

• Model model; defines and trains the RL model

• Game game; initiates game play and utilises the modified reset() and step()

methods.

Important parameters to note are:

• rl ships; keeps track of the status of the ships that the RL agent is firing at (whether

they have been hit or sunk).
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• rl state; keeps track of the current state of the game board, gets updated after every

step the RL agent takes. Helps the RL agent choose next steps based on probabilities

that are calculated due to the current state.

• terminal; checks whether the criteria for game over is met after every step taken by

either a human or RL agent player.

5.1.2 Algorithm

In regards to finding a reinforcement learning algorithm that would be suitable for this con-

text, there are many available. As previously mentioned, Battleship is a highly stochastic,

and non-deterministic, problem set, therefore an algorithm that utilises probabilities is re-

quired. Policy Gradient (PG) methods are a type of reinforcement learning technique which

seek to optimise the policy directly, that is, by maximising the expected outcome (reward).

There is currently an abundance of policy gradient algorithms available to use, in this work

a simple Tensorflow reward-to-go method was selected for use, given that OpenAI offers well

documented open source algorithms [34]. A reward-to-go policy makes sure to only reinforce

when the consequences of an agent’s action is known, else the reward has no bearing on

whether the action was ”good” or not. The initial expression for a policy gradient is as

follows:

∇θJ(πθ) = E[
T∑
t=0

∇θlogπθ(at|st)R(τ)]

Updating the expression to the following makes sure that rewards are only ever given

after actions (and their consequences) are known. This is how the policy gradient agent is

trained to play Battleship:

∇θJ(πθ) = E[
T∑
t=o

∇θlogπθ(at|st)
T∑

t′=t

R(st′ , at′ , st′+1)]

The process of setting up this policy gradient algorithm is as follows:

1. Initialise the policy network; in this case a feed-forward neural network.

2. Generate a trajectory using one sample.
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3. Estimate the return.

4. Update the policy parameters.

5. Use optimisation technique and repeat steps 2-4 until optimal policy is achieved.

The goal of this algorithm is to calculate the probabilities (which are updated per step)

and, using gradient descent, optimise the weights in the neural network to achieve an optimal

policy gradient algorithm.

5.2 Interactive Reinforcement Learning

Once the RL model reaches optimal performance, it is then used as ”base knowledge” for the

IRL model. Some IRL models may train on human feedback only, however, this project is

to investigate the outcome of a model that trains with both. Twenty users were involved in

an extra layer of training, in which they were asked to observe the agent’s steps and return

scalar value rewards based on how they thought the agent was performing. The users were

asked to supply rewards between the values of -1.0 and +1.0 to one decimal point. These

values were chosen in order to keep consistency with the lower and upper boundaries of

the environmental rewards given to the RL agent. The study was to encourage maximum

customisabilty and since the reward system was setup to receive scalar values only this was

already very limited. Due to this, the users were not given any extra details about how the

environmental rewards were calculated (i.e. +1.0 for a hit), so as to not influence them in

copying that system. They are told, however, that positive value rewards should be used for

”good” actions and negative value rewards should be used for ”bad” actions.

5.3 GUI

The GUI is a simple design using the pygame library. It features two grids as previously

described in Section 4.2.1. The left grid is used to fire shots at the agent’s fleet. The right

grid displays the player’s fleet and enemy (agent) shots. The interface invites users to make

moves using mouse clicks during game play. User’s receive encouraging feedback throughout,

an example of this can be seen in Figure 7. Also demonstrated here are each of the possible

markers used on the game board:

• Blue represents a missed shot, i.e. the shot landed on an ocean square.

• Orange represents a hit.
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• Red represents a sunken ship.

It should also be noted that the most recent shot fired by the agent is marked with a

black spot; this is to assist the human player in keeping track of their opponents shots.

During training, the display alters to include a textbox field in which users can input

rewards using keyboard inputs, an example of this can be seen in Figure 8a. In order to sub-

mit a reward, users simply have to press the enter key. Numerical values only are accepted

at this stage of development. An example of what a user sees during the lab is shown in 8b.

Figure 7: GUI: In-Game Feedback

5.4 Game Play

Upon installing all correct dependencies, instructions on how to initiate game play are as

follows:

5.4.1 Play Against RL model

On line 624 within policy gradient agent.py, set:

default_model_name = "policy_gradient-3299008"

Once the default model is set, enter the following in a terminal:
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(a) Example Training Run (b) Example User Training IRL Agent

Figure 8: Training Examples

python policy_gradient_agent.py

5.4.2 Play Against IRL model

default_model_name = "policy_gradient-2"

Once the default model is set, enter the following in a terminal:

python policy_gradient_agent.py

5.4.3 Begin Interactive Training

Enter the following in a terminal:

python policy_gradient_agent.py --train
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6 Results & Discussion

6.1 Results

Both the RL and IRL agent played a total of 100 times against 20 user study participants;

five times each per user, per model. Upon completion, the results were recorded and can

be seen in the following visualisations. Figure 9 shows the total number of steps taken per

game.

Figure 9: Comparison of Number of Steps per Game

A comparison of the first twenty games is shown in Figure 10 to show the results more

clearly. It is easier to see here that the mean number of steps is across these twenty games

are lower for the IRL model.

Figure 10: Comparison of First 20 Games
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Figure 11 shows the results from each game played by the IRL model and indicates which

games the agent won or lost. There is no real trend between less total moves and the agent

winning; the results are fairly scattered. This will be discussed further in Section 6.2.

Figure 11: Win-Loss Comparison: IRL Model

A number of important model performance parameters are recorded in Table 1, offering

easy comparison between the two models.

Model Min Steps Max Steps Mean Steps Win-Lose Ratio

RL 46.0 70.0 59.1 1.1

IRL 47.0 65.0 56.3 1.3

Table 1: Comparison of Model Performance

Prior to IRL training, Figure 12 shows an example of the agent making an unnecessary

move. The agent has taken a shot at a location directly next to a previously sunken ship;

this is a wasted move as following the rules outlined in Section 4.1, ships are not placed

directly next to each other; there is always a minimum of one grid square between each ship.

Figure 13 provides a visualisation of the rewards given to the RL and IRL agents over the

extent of one training epoch. The human-provided rewards were significantly more positive

in this example, with a larger variety of values compared with that of the environmental

rewards. A summary of this data is provided in Table 2. 76.86% of the RL agent’s rewards
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were below zero, in comparison only 15.05% of the IRL agent’s rewards were below this

value. Showing that the human teacher, in this example, positively reinforced the agent.

This is often the case with human-in-the-loop training.

Figure 12: Example of RL Agent Strategy

Figure 13: Comparison of Rewards (one epoch)
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Model Mean Reward % Below 0

RL 0.14 76.86

IRL 0.17 15.05

Table 2: Comparison of Rewards Over One Epoch

6.2 Analysis & Discussion

From the information displayed in Table 1, it is clear that the IRL slightly outperforms the

RL model in all but one metric, minimum steps. The IRL model won 18% more games

overall and achieved an average 4% lower than the RL agent.

Since the IRL agent was only trained by 20 participants, as opposed to the millions of

training runs that the RL agent completed, it is not so simple to deduce from these results

that the IRL agent performs better due to the interactive training.

There are first a number of environmental factors to consider in this case. Firstly, par-

ticipants played 5 games each against the RL agent before completing interactive training.

There is likely chance that the users had an impaired attention span by the time they played

any games against the IRL model. This may have lead to more wins for the IRL agent, not

because of an increase in model performance but due to a decrease in performance on behalf

of the human players.

Additionally, there is no real trend between less total moves in a game and the end result

(winner of the game), shown in Figure 11. For example, the IRL agent won a game in 51

moves but lost a game in 47. This scattered distribution of wins and losses will have been

in part, a result of the human player’s ability. Since twenty participants were used, it is fair

to assume that some will have been more skilled than others, causing the skew of results. It

is also important to remember that Battleship is in part, a guessing game, therefore some of

the wins and losses will have been down to a few good or bad guesses on behalf of both players.

Having said this, there is evidence that the IRL training did somewhat improve the

agent’s strategy. As previously mentioned, there were multiple occasions where the RL

agent searched in locations directly next to sunken ships, an example of which is shown in

Figure 12. These shots are unnecessary due to the rules of the game. The IRL agent did

not make any moves like this across the 100 games it played, suggesting the human feedback

helped to develop the state-action space. The participants were made aware of the game
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rules and likely began to give the agent negative value rewards for actions like this.

A final, interesting point to consider is the pronounced difference in reward values pro-

vided by the environment compared to those from human participants. Whilst the RL

algorithm trained on mostly negative feedback, the IRL agent trained on mostly positive.

This is somewhat expected, as studies have found that humans tend to being teacher agents

similar to how they would teach humans, with positive reinforcement. It is also reassuring

to see that in the example training epoch, displayed in Figure 13 this particular participant

used a nice range of numbers between the defined upper and lower boundaries.
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7 Limitations

The implementation and user study that has been presented in this thesis were subject to a

number of limitations, namely, a short time period in which to carry out development and

testing.

The RL model was able to train extensively in comparison to the IRL model, this is solely

due to the short timescale that was on offer to complete the project. Since the IRL model

trained on real-time human feedback, it was time consuming and therefore only completed

twenty full training runs (in comparison to the millions that the RL model was able to run

through). This means it is quite difficult to conclude whether the IRL training had much of

an affect on the overall model behaviour.

In addition, the IRL model was trained using a limited number of users. Each of whom

were asked to play multiple games against both agents in one sitting. This meant that each

user played a total of 10 games of Battleship and observed an additional game played solely

by the IRL agent during the training phase. It is fair to assume that some of the users may

have become disinterested in the process, or their attention may have changed throughout

the study (this is just what happens when a human is asked to complete a repetitive task,

their attention span can become limited). Ultimately, this would have somewhat affected

the results that have been presented here. With a more generous timescale, the user study

could have benefited from a larger number of participants. Suay et al discuss ways in which

to combat the short attention span of a human completing repetitive tasks. The most in-

teresting approach being to allow the agent to essentially rush through parts of the task

that it knows well, until it reaches unknown parts, where the state-action space is not well

defined [6]. This approach, however interesting, would not be applicable to the game of

Battlehip, but it is something to keep in mind during future user studies.

Finally, the GUI was built using the pygame library and whilst the interface displays

everything correctly and simply to the user, it is very limited. Since this was a small-scale

project with certain time limitations, the GUI was acceptable. However, the limitations

that comes with this library certainly restricted the amount of user engagement features

that could be added to the interface. For example, simply displaying messages began to

effect the smooth-running of game play - too many messages caused time delays between

making a move and printing the shot on the grid. Additionally, in order to hold a successfully
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larger user study, it would be wise to develop on a platform that is easy to distribute. This

study was limited to the laptop that had the source code on it to execute the program.
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8 Conclusion

8.1 Conclusion

The main objective of this thesis was to explore and investigate the impact of introducing

human-in-the-loop training on model performance. A small user study was undertaken in

order to facilitate this work. Twenty participants were able to interact with two different

models, one of which they collectively trained over the course of the study which resulted

in the agent receiving approximately 2000 human-provided rewards. Analysis of the results

show that the IRL agent outperformed the RL agent in all but one of the measured metrics.

It is believed that due to the participants having a wider range of reward values, the IRL

training was able to expand the state-action space, which in effect improved the strategy of

the agent.

The positive results also showed that IRL is effective in larger environments and may

therefore its uses into real-world, complex environments. It is important to note however,

that this was a small scale study which was constrained by time and consequently there may

have been other environmental factors at play in the presented results. The main concern

being that the participants were completing many repetitive tasks, which humans are known

for not being good at without having a reduced attention span.

In addition to this, the topic of bias, particularly that which originates from humans, was

examined. IRL models in particular are vulnerable to these bias types, as they are trained

solely on human feedback. Examples of this can be reward bias, humans have a tendency

to positively reward agents in an attempt to encourage (reinforce) good behaviour. This

tendency was evident in the user study. Whilst the rewards supplied by the participants did

have a positive trend, there was insufficient examples to deduce whether this had a potential

impact on the model’s overall performance.

8.2 Future Work

The results observed from the user study highlight the advantages of employing a human-

in-the-loop approach in the training of ML agents. Furthermore, this project was designed

with the intentions of being used as foundational work for future projects working with

RACE / UK Atomic Energy Authority (UKAEA). The focus of this future work will be
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directed towards aiding their primary domain; robotics and remote applications in extreme

settings, notably fusion energy. The particular focus will be to explore the enhancement of

the current tele-operated robotics system, known as MASCOT, that is used to carry out

maintenance tasks inside fusion reactors. Currently, the maintenance tasks are carried out

solely by highly trained human operators who likely experience a consistently high cognitive

load throughout the work day. Future endeavours will involve the exploration of automating

some of these tasks, so that the human operators may benefit from the use of an agent’s

assistance. The intention is to collaborate with their industry experts and robotic operators

in order to achieve designs and implementations that prioritise a human-centric focus.
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