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Abstract

Global localization via the use of image based querying/landmark de-
tection has been a successful area within AI for a few years [2] - however,
one issue within this field of research is the naturally large variances in
locational imagery over time, either due to a change of weather, camera
angle or if an image is taken at night rather than in the day. Due to this,
many researchers have sought to perform localization based on LIDAR
gathered 3D pointcloud data, the motivation being that because these
clouds provide locational structure rather than appearance, variance be-
comes less of an issue as the factors mentioned before rarely affect overall
structures.

We set out not only to identify a pointcloud-based place recognition model
that can aid in the real world problem of shoreline vessel navigation (in
the absence of GPS), but to do so in a way that provides a good deal of
explainability to the user, such that they can interpret the machines de-
cision. Explainability is an important aspect of applying AI to real world
use cases, as often times the model may produce a less than certain result
that, if wrong, can lead to a loss of trust and abandonment of the machine
as well as potential accidents, in which case providing an explanation can
help the user to better understand the models reasoning as well as display
the cause of some fault.
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1 Introduction

1.1 Context and Motivation

Owned by the United States Government, GPS localization is a key technique
for the navigation of almost all forms of travel, allowing users to receive real
time geolocation updates when in line of sight of several GPS satellites. For sea
vessels specifically, GPS ensures that manned vessels can travel safely and effi-
ciently, making the job of the ships navigator significantly easier and enabling
autonomous vessels to travel without any human control.

Because of the need for vessels to be within view of multiple satellites how-
ever, if there are enough obstructions such as dense clouds or large mountains
blocking a satellites line of sight the system may not be able to provide further
geolocation updates for some time. In this case, a manned ship must then turn
to a human navigator in order to determine the next course of action, making
their job far more challenging. Autonomous vessels are in an even worse posi-
tion as there is no one on board to perform the role of navigator, forcing the
vessel to come to a halt or be placed under remote manual control, hindering
it’s autonomy.

This paper will cover a proof of concept to create an explainable AI-based
GPS backup for sea vessels near visible shorelines, by scanning pointclouds of
the shoreline via 3D LIDAR and passing them to a place recognition model
in order to retrieve an approximate geolocation. Having an AI analyse nearby
structure via LIDAR scans should be able to act as an extension of what a hu-
man navigator is capable of, in that it can more easily analyse the topology of
the surrounding area in addition to the more typical landmarks that a human
would use.

As mentioned in the abstract, the main motivation behind the use of LIDAR
rather than a camera ties into one of the main key challenges of AI based place
recognition, that being the tendency for locations to appear visually different
depending on weather, season and time of day, which may cause an AI to not
recognize locations consistently. LIDAR scans counter this issue because unlike
a camera taking a 2D image, a LIDAR does not record colour values of nearby
shorelines, instead producing 3D structural replicas in the form of pointclouds
which is far more invariant to the changing of seasons/time, putting the system
more on par with human navigators in identifying certain locations and perhaps
even surpass them.

To make the model explainable for the end user, a method that we would be in-
terested in applying is some form of pointcloud saliency mapping to the models
output. This has been done to great success within the area of 2D image clas-
sification [19] by highlighting key areas of interest that influenced the output,
it also falls in line with our human centred focus as we are currently aiming to
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develop this AI in accordance with well-known responsible AI principles, which
tend to include the need to make results explainable to the user.

Because a user study was not possible for this paper due to COVID, and because
deciphering shapes from pointclouds is a good example of the Gestalt principles
[31], we propose to use these same principles in order to determine whether the
features/shapes highlighted by our saliency maps are also interpretable enough
to provide explainability.

1.2 Objectives

• Extraction of features from pointcloud data via deep learning: In
order to perform place recognition on pointclouds we must identify a model that
can act as an equivalent to the Convolutional Neural Nets [12] currently used
for extracting features from 2D image data, at the moment applying 3D convo-
lution tends to be unviable due to the large increase in complexity and models
that have attempted this have had to reduce data size to numbers as low as 30
x 30 x 30 [34] which would not be sufficient for representing the locations we
wish to capture.

• Obtaining a global feature descriptor from extracted features to
perform place recognition: Because the potential for variance between lo-
cational based data is so high, current methods such as SIFT [14] make use of
more sophisticated global feature descriptors such as VLAD [3] to return only
the most important and invariant features within images, so finding something
that can perform this on our extracted pointcloud features is key.

•Accessing a database of geo-tagged 3D pointclouds for place recogni-
tion training: In order to train the model we need access to a set of geo-tagged
pointclouds that we can use to determine the approximate location of an input
pointcloud by matching it to another captured instance of the same location,
preferably these clouds should also overlap so that our saliency mapping can
highlight features present in both.

• Applying saliency mappings to 3D pointcloud data for the pur-
pose of making the AI explainable: Although effective for 2D data, to our
knowledge saliency mappings for pointcloud data are not a well researched area
which is likely due to either the added complexity of 3D data or because 2D
methods such as RISE [19] tend to work by reducing pixel colour values to zero
whereas pointcloud points have no such values.

• Enhancing identified methods via new model innovations: Often
times the most cited models within a particular field will have had new im-
proved versions in the years since their discovery, therefore where possible it
would be a good idea to include these in our final architecture.
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1.3 Contributions

• Explaining the results of pointcloud based place recognition models
via the use of Saliency Mappings: If this technology is to be used for real
world problems as a form of decision support then it must be explainable in
order to qualify as a responsible use of AI, which we hope to achieve through
the use of saliency which to our knowledge has thus far only been used for ex-
plaining classification models.

• Evaluating the interpretability of pointcloud saliency mappings us-
ing Data Visualisation and Gestalt Principles: It is possible that even
if the saliency mapping can be applied to our results, the initial visualisations
may still leave much to be desired due to the addition of point depth, thus we
propose to study the best way of visualising saliency for these models using data
visualisation techniques while also making sure the results adhere to the gestalt
principles.
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1.4 Thesis Overview

• Chapter 2 - Background: We begin by taking a look at recent develop-
ments in pointcloud deep learning methods to identify a suitable architecture
for our proposed AI, we also look into how place recognition had been performed
in the past with classical feature extraction techniques before discussing newer
trainable methods. After discussing the technical details of various machine
learning architectures, we move on to explainability through the use of saliency
mappings for both 2D and 3D data, provide a brief look into the gestalt prin-
ciples and finally consider whether or not the project satisfies the requirements
of responsible innovation.

• Chapter 3 - Data: We discuss the data that we will be using to train
our architecture - including details of it’s collection, format and any challenges
associated with it.

• Chapter 4 - Methodology: Here we outline the details of our architecture,
along with training and evaluation methods. We will also discuss explainabil-
ity will be introduced to the architecture, including how it will be applied and
evaluated.

• Chapter 5 - Experimental Results: This section will consist of the results
of training our chosen architecture and applying explainability respectively, in
addition to an evaluation of both.

• Chapter 6 - Conclusion: A reflection on the results shown in chapter
5 with respect to our initial expectations, where we will determine the overall
success/potential shortcomings of the project.

• Chapter 7 - Future Work: A section that will go over various impor-
tant aspects of the project that we would like to pursue going forward, will also
include anything that was not able to be completed during the course of the
Masters.

• Chapter 8 - Acknowledgements: Short section that will go over any
outside sources that helped with the projects final outcome via the use of code.
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2 Background

2.1 Introduction to Deep Learning

Before diving straight into deep learning on 3D/pointcloud data specifically, we
start by introducing the reader to some of the main ideas of deep learning by
going over two widely used models, MLP and CNN. These two models tend
to make up the backbone of most machine learning architectures and will also
appear when covering the more advanced models in the next section.

2.1.1 Multi-Layer Perceptron

One of the first ever ML models to see wide spread use, the MLP is an extension
of the classic perceptron [24] which was an old method for performing binary
classification by carrying out a simple formula of f(x,w) = y, where f is a
function with weights w.

The Multi-Layer Perceptron (AKA Neural Network) then introduced the idea of
having intermediate nodes known as hidden units, which can be used to detect
features by applying some form of activation function onto the input.
Weights of the model are now allocated to each connection between each part
of the input and each of the hidden units to form a matrix.

Instead of using a fixed function f , the model now learns to estimate an ap-
proximated function f̂ that returns a prediction close to the true output y of
each training input x

Figure 1: Basic MLP with two inputs X1 and X2, both of which pass their
values to the hidden units H1 and H2, which then produce output value y, note
how each connection in the graph has an associated weight value WX

As illustrated in Figure 1 learning occurs by performing what’s known as
forward propagation, where each hidden node applies an activation function to
the sum of all it’s weighted connections to the input layer, the sum of the hidden
nodes weighted connections are then also calculated to form the final output Y.
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2.1.2 Backpropagation

In order to automate the allocation of optimal weights for models such as the
MLP, we must make use of what is known as a loss function.
In it’s simplest form, the loss is just the difference between the predicted output
of some input x and it’s true output y but other more advanced methods can
include mean squared error, log loss and maximum likelihood.

To optimise a weight we take the gradient of the loss with respect to each
one and adjust it accordingly, known as gradient descent.
However, in order to perform this on MLP’s which can potentially pass the
input through multiple layers and weights we must use a technique known as
Backpropagation [25].

In short, backpropagation applies the chain rule of derivatives [13], a math-
ematical method that allows one to obtain derivates of multi-layer functions,
to the activation function of each hidden layer in order to obtain the partial
derivatives for all weighted connections in the network.

2.1.3 Convolutional Neural Network [12]

Although a good, generalisable model that can be applied to most tasks, one
area in which MLP’s struggle in is analysing 2D image data, largely due to the
added computational complexity.
This complexity stems from the fact that for an image with, say, 128 x 128
dimensions, there are now 16384 input nodes (one for each pixel), pass these
on to 10 hidden nodes (which would be considered a very low number) and you
now have 10 x 16384 or 163840 weighted connections!

Convolutional neural networks [12] are an extension of the MLP that intro-
duce the idea of using convolutions in one or more of their layers, which is
where a kernel containing multiple weights is applied to each member of the
input in order to convert their values into a weighted sum of the input and it’s
surrounding neighbours, with the kernel size determining the neighbourhood
size.
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Figure 2: Example of a convolution operation, on the left is a 3x3 kernel with
it’s weights displayed, in the middle is the kernel being applied to the input
pixel highlighted in bright red with it’s neighbours also highlighted and on the
right the pixel has been converted to a new value based on applying the kernels
weights to the neighbourhood before performing a final summation.

Convolution can also be represented using the following equation, where I is
a 2D image at pixel i, j and K is a kernel of size x by y:

I(i, j)K(x, y) =
∑
x

∑
y

I(i+ x, j + y)K(x, y) (1)

Because weights are now tied to the kernel rather than connections, the
number of weights in the network is reduced to the dimensions of the kernel
multiplied by the number of different kernel filters applied per layer (i.e. 64 3x3
kernels equals 9 x 64 = 576 weights).

Kernels are also a natural fit for image data due to the fact that in previous
years kernels with static weights have been applied to images in order to perform
tasks such as edge detection, thus it is a good method for detecting local image
based features that take the surrounding neighbourhood into consideration.

2.2 Pointcloud-based Deep Learning

In past years, CNN models such as VGG16 [28] and AlexNet [11] have been
dominant in image based deep learning for tasks such as multi-class classifica-
tion, however as more and more researchers are now shifting their focus towards
newer, 3D datasets gathered using LIDAR there is a growing need for deep
learning models that can analyse volume/pointcloud data.

Knowing how effective convolution networks have become, it would seem ob-
vious to attempt to apply some 3D convolution kernel to this data, however the
issue here is that 3D data introduces a cubic increase in computational time.

This is due to the dramatic increase in the number of weights per kernel which
so far has rendered many proposed methods too time-consuming to be consid-
ered practical, leading to a situation where the highest resolution that can be
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processed in any reasonable amount of time was found by the creators of 3D
ShapeNets [34] to be 30 x 30 x 30 which introduces a new problem due to these
samples often now being too small to provide an acceptable representation of
complex shapes.

In this section, we will go over a series of methods that attempt to alleviate
these issues in order to efficiently process 3D data for the purpose of deep learn-
ing.

2.2.1 Multi-view CNN [30]

Proposed by Hang Su and co. in 2015 [30], the Multi-view CNN performs 3D
deep learning by opting to analyse multiple 2D projections of a 3D object, each
of which providing a different angle of view, which are then passed to a tradi-
tional 2D-based CNN and the results of all of these are then aggregated to get
an overall result.

Rather than trying to extract a shape descriptor of each input using 3D con-
volution, this approach instead extracts multiple 2D view descriptors, allowing
us to make use of more efficient existing CNN models which we know provide
superior performance to 3D equivalents and then pooling these view descriptors
to get a single shape descriptor.

This way, the cubic computational increase of 3D convolution is bypassed, with
computational time now increasing squarely depending on the projected im-
age resolution, allowing the 3D object itself to keep it’s original resolution thus
retaining a far higher degree of graphical fidelity.

Figure 3: Virtual cameras are used to create multiple 2D projections of a 3D
chair object, the results from passing these to a CNN are then pooled and passed
through a second CNN, providing the final result. Figure taken from [30]

By calculating the saliency of each view to the overall result, the researchers
were also able to find the optimum angle for performing classification on each
object, with views showing the objects head-on tending to have the highest
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saliency and those from the side having lower saliency.

This brings up an important question however, if all this architecture does is
find the best projections of 3D data to 2D and applying traditional methods
then have we actually leveraged the additional information 3D provides or have
we just found a workaround?

Also, for our project we wish to find a model which can analyse 3D pointclouds
of shorelines where most of the points are on the outer regions of the cloud and
the centre is mostly empty, would this mean that many of the angles in Figure
3 would retrieve minimal information? In addition, although this method works
well for classification of single objects, there is nothing to say that it would work
well for more complex scenes with multiple features at varying depths.

2.2.2 Volumetric CNNs

Another improvement upon the 3D ShapeNets [34] model is a Volumetric CNN
referred to as VoxNet [16] which instead of taking pointclouds as input directly,
instead opts to generate what is called an occupancy grid of some fixed size, in
this case 32x32x32.

To briefly explain, an occupancy grid is a technique usually employed by sonar
[18] in order to detect areas of 3D space that are occupied, free or unknown,
choosing to use the grid not only means that the original pointcloud input can
be analysed at a higher dimension but the unknown areas returned by the grid
give us a richer representation compared to raw pointcloud input.

Essentially, unknown areas are locations where there could be an object but
the LIDAR (or other device) was not able to capture i.e. the side of a car facing
away from a deployed LIDAR, this information is therefore useful as it can give
a clue to an observed objects full shape.
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Figure 4: Pointcloud is first converted into an occupancy grid input, this is then
passed to two separate 3D conv layers, the latter of which also pools the feature
before being passed to an FC layer and finally producing a classification output.
Figure taken from [16]

This method was found to be on par with ShapeNets while still being fully
3D based, with the most notable improvement being the drastically reduced
number of parameters needed for the overall model, however the researchers
were still not convinced as to whether or not the model could fully exploit the
information available.

Also, richer as it might be the occupancy grid is still just 32x32x32 dimen-
sions, meaning that attempting to reduce a more complex scene into such a
representation would likely result in a lot of finer details being lost still.

At this point Multi-View CNN still appeared to be a superior choice to true
volumetric based models for classification performance, as a response to this
in 2016 new variations of the traditional Volumetric CNN were proposed by
Charles R Qi and co. in order to make them perform on-par with the Multi-
View method.

The first suggestion was to provide the 3D ShapeNet architecture with aux-
iliary training tasks on subvolumes of each training sample, motivated by the
original models tendency to overfit the given training samples.
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Figure 5: Visual representation of ShapeNet with the additional auxiliary train-
ing tasks visible, which in this example is done by slicing the extracted features
in the final conv layer and passing them to a partial object classifier, forcing the
model to take advantage of local features. Figure taken from [21]

The second proposal was to use anisotropic probing in order to achieve a 3D-
to-2D projection of the volume data using an elongated kernel, which is able to
better capture the internal structure of volume data and allows the architecture
to scale to higher resolutions.

Figure 6: Elongated kernel slowly convolves the 3D input ‘cube’ into a 2D ’plane’
projection. Figure taken from [21]

Both of these methods were found to match the performance of Multi-View
CNN at the same resolution, however despite these innovations the researchers
concluded that the efficiency of Volumetric CNNs was still bottlenecked by the
input resolution, thus taking advantage of these improved local feature extract-
ing techniques to gain a better understanding of complex scenes was likely not
possible.

2.2.3 PointNet [20]

Taking into account the resolution issues of Volumetric CNNs, PointNet is a
more recent alternative to both Volumetric and Multi-View, which acts as an
improvement over the latter when given fully 3D tasks such as point classifica-
tion and automated shape completion.
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The architecture of PointNet is surprisingly simple and can take in raw point-
cloud data directly as it’s input, the model is designed to work in tandem with
the unordered nature of pointclouds such that it is invariant with respect to
different permutations, while also being able to extract local features based on
euclidean distance and to be invariant to rotational/jitter transformations.

To achieve this, PointNet passes the input through various MLP layers (with
additional input and feature transformations to further improve performance),
with the features in the last MLP being aggregated through the use of max-
pool as a symmetric function, resulting in the extraction of the clouds most
informative points which can then either be used to form a global descriptor for
classification or can be used to predict per point labels for segmentation.

Figure 7: Visual representation of the architecture described above, note that
the model can actually output a segmentation classification in addition to an
overall classification, the architecture for the former being highlighted in yellow.
Figure taken from [20]

Due to PointNet’s ability to extract 3D point based information instead of
the image descriptors retrieved by Multi-View CNN while also being able to
maintain good pointcloud resolution, it is arguably the first model to be able
to perform 3D deep learning on complex scenes such as LIDAR scans of rooms,
which is showcased in the paper during the semantic segmentation examples.
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Figure 8: Examples of PointNet’s segmentation network applied to pointclouds
of indoor office rooms, from one scan the model is able to identify multiple
features within the scene (i.e. Chairs, Walls, etc.) with a good level of accuracy,
all while keeping the data purely 3D. Figure taken from [20]

Because PointNet takes in raw pointcloud data directly (i.e. 4096 points per
cloud) which is then passed to a simple MLP layer, computational time is dras-
tically reduced compared to previous methods as the time taken now increases
linearly depending on the size of the pointcloud rather than squarely or cubicly,
meaning the pointcloud can potentially be analysed at it’s full resolution.

2.2.4 PointNet++ [22]

PointNet [20] marked a big breakthrough in the world of deep learning on point-
clouds, due to it’s ability to efficiently aggregate spatial features of each point
within the cloud into an a global descriptor of the cloud itself.

However, not long after being published the same team who had built PointNet
came out with an extension called PointNet++ [22] which sought to not only
analyse all points within a cloud, but also exploit local structures similarly to
CNNs which are able to progressively capture larger scale features through the
use of multi-resolution hierarchies.

As such, PointNet++ is a hierarchical network that works by partitioning point-
clouds into overlapping local regions by the underlying distance metric of the
cloud itself, similarly to a CNN architecture these are then grouped into larger
units which can be processed in order to retrieve higher level features.
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Figure 9: Illustration of PointNet++ architecture, feature learning consists of
a sampling and grouping layer in order to extract local subsets which are then
followed by a traditional PointNet layer which learns the higher level features
contained within these subsets. Figure taken from [22]

Note that in the illustration above, the actual operations performed within
the “sampling & grouping” layers consist of an iterative farthest point sampling
of the input set followed by a grouping of points into subsets using a ball query.

With these additions, PointNet++ was able to achieve a new level of state-of-
the-art performance on benchmark datasets, including ModelNet40 [34] which is
a dataset that all of the previously talked about methods have also been tested
on.

2.3 Obtaining Feature Descriptors for Place Recognition

Place recognition is a special form of image based retrieval, where a new ‘query’
image is matched to an existing image that depicts the same location, for place
recognition specifically these queries are matched with instances from a geo-
tagged database, allowing the user to receive an approximate geolocation.

The main challenge in this area identified by previous researchers is the fact
that most locational images tend to contain a lot of non-distinctive features [4],
including generic office buildings, pavements, trees etc. and, as we mentioned
in our introduction, a key issue is the change of areas over time and potentially
the change of angle or position from which an image or scan of a location is
taken from at two separate instances.

Because of this, one of the main challenges of place recognition is providing
representations of the input data that show local invariant features.
In this section we will go over two methods of obtaining feature descriptors, the
classic SIFT based approach and the newer trainable NetVLAD layer.
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2.3.1 SIFT [14]

SIFT, standing for Scale Invariant Feature Transform, is a feature extraction
method for images that works in four main stages.

The first stage works by searching over all scale and image locations using a
difference-of-Gaussian function to identify scale and orientation invariant areas
of an image in order to retrieve several locations of interest, the second stage
then fits a model to determine the location and scale of these locations, filtering
them down to a set of keypoints based on stability.

Then, at the third stage, orientations are assigned to each keypoint based on
their gradient direction and the transformations applied to these keypoints up
to this stage are kept and used in further operations to ensure invariance.

Finally, in the fourth stage, keypoint descriptors are obtained by measuring
local image gradients at the selected scale around the keypoints which can then
also be transformed in order to allow for some level of distortion/illumination
variance.

Figure 10: An example of SIFT applied to a query image (top right), based
on a set of previous training images (top left) the method is able to identify
these areas as keypoints within the test image, allowing it to be used for place
recognition

What is important to note, is that although it can be used as part of a
pipeline, SIFT itself is not a machine learning model and as such it cannot be
‘fit’ to a specific set of training images, typically the features learnt by SIFT
are aggregated using methods such as bag-of-words [29] or VLAD [3] and then
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matched to some nearest neighbour image.

2.3.2 NetVLAD [2]

A much more recent alternative to SIFT-based place recognition that seeks to
leverage the power of existing CNN’s such as VGG16 and AlexNet, NetVLAD
is a generalised version of the existing VLAD layer that can be plugged into a
CNN architecture and trained via backpropagation.

When given a set of image features, NetVLAD learns K cluster centres and
outputs a (D∗K)-dimensional vector which forms an aggregated representation
of the local feature descriptors, also known as a VLAD descriptor.

Because the VLAD descriptor has high dimensionality it is expensive to com-
pute, thus the NetVLAD layer also makes use of a dimensionality reduction
layer followed by L2 normalisation to get the final image descriptor.

What allows NetVLAD to learn over time compared to regular VLAD is tha
instead of using K nearest neighbours in order to perform a hard assignment
of local features to cluster centres, NetVLAD instead uses a soft assignment
where weights are applied to each input feature based on their distance to the
closest cluster centre relative to all of the others, a convolution operation is then
performed using these weights and softmax activation is applied to assign each
feature to a cluster.

Using backpropagation, NetVLAD is able to tune these weights over time to
ensure the generation of optimal global feature descriptors.

Figure 11: Visual example of the trainable NetVLAD architecture described
above. Figure taken from [2]

2.4 PointNetVLAD [1]

At the beginning on this project, we believed that in order to identify an ar-
chitecture capable of pointcloud place recognition we would have to build one
ourselves from the previously mentioned resources. However, during our back-
ground reading we found out that another group of researchers had already de-
veloped an architecture that performs the desired task by taking the NetVLAD
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layer and, instead of plugging it into a CNN, used PointNet instead to produce
the model known as PointNetVLAD [1].

By combining PointNet and NetVLAD together, a new place recognition pipeline
is created whereby we take a 3D pointcloud P as input, pass on it’s feature de-
scriptor P ′ to NetVLAD which learns a set of K cluster centres, from which the
model returns a (D ∗K)-dimensional pointcloud feature descriptor.

Figure 12: Visual representation of the PointNetVLAD pipeline. Figure taken
from [1]

Instead of using a database of images, here the task of place recognition is
performed by taking a pointcloud reference map, dividing this reference into
several submaps, and training the network to recognize each of these such that
it can identify which submap each test instance belongs to.

The motivation behind this model is the same as our initial motivations for find-
ing a pointcloud based model, that being the fact that pointclouds are naturally
more invariant than images for retrieval/recognition tasks, because although lo-
cations tend to change in visual appearance at different times (i.e. day/night,
seasons, etc.) they do not tend to change structurally, meaning we may be able
to rely less on data augmentation methods to achieve invariance.

PointNetVLAD trains itself by using a modified version of what is known
as triplet loss referred to as “lazy triplet”, whereby a set of training tuples
T (Pa, Ppos, Pneg) with Pa representing an anchor pointcloud, Ppos representing
a structurally similar pointcloud and {Pneg} representing a set of structurally
dissimilar pointclouds are provided to the model as input.

The loss then works by minimizing the distance between Pa and Ppos while
maximizing the distance between Pa and some pointcloud from {Pneg} called
Pnegj , the two of which are denoted as δpos and δnegj respectively, with squared
euclidean being used to calculate distance.

This process can also be defined by the following equation, where δnegj is based
on the Pnegj closest to Pa, [...]+ represents the hinge loss and α is a constant
parameter used as the margin:
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LlazyTrip(T ) = maxj([α+ δpos − δnegj ]+) (2)

A second loss known as lazy quadruplets is also used, whereby we also at-
tempt to maximize the distance between Pa and some randomly sampled Pnegk ,
in order to prevent situations where lazy triplets is reduced to finding the dis-
tance between Pnegj and some pointcloud Pfalse that is structurally dissimilar
to it.

This results in the following new equation, where β is another constant pa-
rameter used as a margin:

LlazyQuad(T, Pneg∗) = maxj([α+ δpos − δnegj ]+) +maxk([β + δpos − δneg∗k ]+)
(3)

The only difference between the authors “lazy” losses versus their original
counterparts is the fact that these losses use max operations rather than sum,
meaning the contribution of each negative cloud diminishes compared to a single
hardest negative, which actually leads to a faster training and more discrimina-
tive function.

Essentially this architecture provides us with everything we were looking from
at the start, thus we have chosen to make this our architecture of choice heading
in to the Methodology/Experiment sections. The github page for the project is
also extremely helpful as it provides all of the code and data used in the paper,
thus this model can be used off-the-shelf so to speak.

2.5 Explainable AI

From this point of the background section onwards, we switch our focus from
the technical aspects and history of various pointcloud/place recognition ML
models and shift the conversation towards the more human-centred aspect of
this project, that being the application of explainability to the model.
Before we discuss our proposed method for achieving this in the form of saliency
mappings, we give a brief overview of Explainable AI and it’s importance.

One of the first heavily cited papers covering the topic of Explainable AI was
“What do we need to build explainable AI systems for the medical domain?”
[9], where it was identified that a key issue of using AI and ML for real world
tasks was that they do not have an explicit declarative knowledge representation
meaning they do not possess an innate sense of understandability.

This can cause serious legal issues in cases where a uncertain prediction on
the AI’s part leads to some accident occurring, at which point it is not certain
whether the blame lies with the AI itself or with the user.

Therefore, providing a sense of explainability during times of uncertainty (such
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as a model having only middling confidence in it’s prediction) can help, as now
the user themselves is given the opportunity to analyse the machines reasoning
to reach a more informed human made decision, helping to avoid accidents as
well as making it clearer as to whom the blame falls onto in situations where
they do still occur.

However, reducing the importance of explainable AI to legal issues would be
a huge simplification, as there is also the matter of overall user experience and
trust to consider.

To explain these, we cite Derek Doran et al.’s paper [7] where they divide AI
models into four groups: Opaque, Interpretable, Comprehensible and Explain-
able.

Figure 13: Visual representation of a comprehensible, interpretable and opaque
model. Figure taken from [7]

For a model to be opaque is for it to be purely black box, meaning not only is
it not explainable but the user is given no information on it’s technical workings
(i.e. The inner mechanisms are withheld by the company that made it).

The issue with opaque models is that they effectively demand a sort of blind
trust from the user, offering no explanation of their results and giving the user
no opportunity to study it’s inner workings, meaning that if the model period-
ically produces an incorrect prediction this trust can be eroded, as researchers
have noted in the past trust in AI is usually dynamic [27] so even if one has
tended to give correct predictions in the past a sudden error can still quickly
lead to it’s abandonment.

Interpretable models are defined as those which provide the user access to doc-
umentation of it’s inner workings, including open source ML models whose
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associated research papers are freely available.

However, we would argue that requiring all end users to be able to understand
these models is unreasonable, machine learning is an inherently complex field
and as such expecting the average person to study enough to gain insight is not
realistic. Because of this for certain users an interpretable model might as well
be opaque, introducing the same issues as before.

The last two types, comprehensible and explainable are both defined as models
that provide some form of reasoning to the user, with the former providing a
set of simple symbols (i.e. a set of keywords that describe what features of an
image lead to a classification) for the user to reason with and the latter making
use of a more complicated reasoner in order to provide higher level explanations
of what is happening.

Arguably both methods are sufficient, the only difference that separates them
in the figures present within this specific paper are that the explainable model
states what the comprehensible model is also saying much more explicitly, en-
hancing the user experience.

Figure 14: Visual representation of a more advanced explainable model that
makes use of some knowledge base in combination with comprehensible keywords
to provide a very high level explanation. Figure taken from [7]

With these additions, in situations where the machine fails the user can now
at least understand where the model may have gone wrong as well as being able
to disagree with the model, enhancing the human-AI interaction and potentially
keeping the users trust in the model intact.
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2.6 Saliency Mappings

Now that we have a good understanding of Explainable AI and it’s importance
with regards to ensuring trust and aiding in legal disputes, we move on to anal-
yse our proposed method of explainability to apply to PointNetVLAD, Saliency
Mappings.

A saliency mapping is an explainability technique that, rather than providing
the user with keywords, instead visually highlights areas of an image that had
a large affect on the models final decision based on what are known as saliency
values.

These values reflect the importance of each part of a machines input during
the calculation of it’s loss, researchers have found that applying a colour map-
ping to these values and overlaying this over the original input tends to produce
a visualisation that points the user to various “hot zones” in an image that lead
to the final decision.
In other words, we make the model more comprehensible (as defined in [7]) by
providing a data visualisation based on importance of input.

There are many methods for applying this to 2D so for this section we will
simply go over one of the more impressive methods, RISE [19], before going
into the inherent differences between 2D image and 3D pointcloud data that
necessitate newer methods specific to the latter.
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2.6.1 RISE for 2D classification saliency mapping [19]

Designed specifically for the purpose of explaining black box models, RISE
makes use of randomized upscaled binary masks applied to an input image in
order to estimate the overall importance of each pixel in the image towards the
classification outcome.

Figure 15: Showcase of RISE’s architecture, a series of binary masks Mi are
applied to the input image I before being fed to some black box model, a
saliency map is then generated from a linear combination of the masks, where
the score for the target class being the weight. Figure taken from [19]

Not only is the process of RISE simple to understand, but the saliency map
is highly understandable for end users by clearly highlighting areas of high im-
portance and low importance in red/blue respectively.

When compared to previous attempts such as GradCAM [26] and LIME [23],
RISE was found to outperform both when using a “deletion” evaluation, whereby
the important pixels were removed in order to see how much the classification
score drops (indicating that those pixels were in fact highly important).
RISE’s classification score dropped more sharply than either of the previous
methods, suggesting that it’s mapping was able to better localize the important
areas within an image.

What stops methods such as RISE from being applicable to 3D pointclouds
is due to a fundamental difference between image and pointcloud data, that
being that the fact that each pixel in an image has both a position and an RGB
value, whereas points only have the former.
This means masking groups of points is simply not possible without removing
them, meaning whatever architecture they are passed to would have to be dy-
namic in terms of the input shape, adding additional complexity to the model.
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2.6.2 PointCloud Saliency Maps for 3D classification saliency map-
ping [35]

The first method for efficiently extracting per point saliency from pointclouds
builds upon the critical subset theory proposed by the makers of PointNet [20],
which suggested that in each classification there exists a subset of points such
that their inclusion always results in the same outcome.

Here, calculating saliency is done via the use of a point-shifting method rather
than point-dropping, as the latter would require a brute force process whereby
every possible combination of points is passed to determine importance, whereas
the former simply shifts each point towards the centre of the cloud which tends
to be ignored during classification and therefore has a similar effect to simply
removing the point.

By doing this, the change in loss for a point can be approximated by the gradient
of the loss under a spherical coordinate system.

Figure 16: Examples of the saliency map being applied to pointclouds as a
colour map. Figure taken from [35]

This method was found to outperform the critical subset theory and it’s
corresponding point drop, as dropping points that were deemed to have high
saliency in this model reduced classification accuracy further and dropping low
scoring points kept the accuracy the same if not better, meaning that for now
these mappings are the best methods for displaying per point saliency/importance.

2.7 The Gestalt principles

The Gestalt principles [31] are a set of properties that allow the human eye to
create shapes even when they are not fully visible, these are instantly applicable
to pointclouds due to the fact that they are in themselves an example of the
principles at work, being a set of disconnected points that make up a more clear
shape.

To understand these principles, we provide a few summaries of the most ac-
cepted ones:
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• Similarity: The ability to group objects that are similar in shape, colour
etc. despite them not being next to eachother, this can be achieved through
saliency by highlighting only the most important pointcloud structures in cer-
tain colours.

Figure 17: Examples of the similarity principle, due to their different colours,
the mind will mentally group together all blue/red points even if they are not
next to each other.

• Continuation When viewing any shape, the human eye tends to follow
the smoothest path, therefore areas with high saliency will be more perceptible
to the end user in cases where all highlighted points line up smoothly rather
than being erratic.

Figure 18: Examples of the continuation principle, both lines can easily be
followed by the viewer due to their straight paths despite overlapping.

• Closure The idea that the human brain will often ‘fill in’ missing parts of
some shape, this is very important for pointcloud saliency in particular as often
times important structures may not be highlighted in there entirety, so we can
leverage this principle in order to naturally fill in certain gaps.
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Figure 19: Examples of the closure principle, despite having gaps in the middle
many people would still perceive this as a circle.

• Proximity When a group of objects are packed together with high density,
it provides a greater sense of proximity and the human brain will group them
together, therefore saliency mappings should not be too sparse as it may be
difficult to see what features they are trying to represent.

Figure 20: Examples of the proximity principle, most viewers would separate
the points on the top and bottom into two groups due to the larger gap between
them.

• Symmetry and Order The tendency to perceive large shapes as being
symmetrical, whether or not we can ensure this principle is uncertain.

Figure 21: Examples of the symmetry principle, due to both brackets being
symmetrical to one another, viewers will observe these as a pair.

2.8 Responsible Innovation

In accordance with the human centred values of Swansea University’s EPSRC
CDT, as we are developing AI for real world use it is important that through-
out development we take the time to focus on responsibilities associated with
designing such systems.

If we use Google’s Responsible AI Principles as a guide based on our propo-
sition so far, we can make some initial judgements on how the final product
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may satisfy these needs along with potential issues:

•AI should be socially beneficial: Assuming our model matches the strength
of the original PointNetVLAD, this could allow for more efficient and safe travel
of manned and autonomous vessels during GPS downtimes can potentially aid
any currently existing maritime activities, and, more specifically, could help in
the investment of autonomous vessels by making them more consistent to nav-
igate, all while being interpretable by a human user.

• AI should not create or reinforce unfair bias: For the most part is-
sues of bias should not be a concern for this project as we are not dealing with
any personal data, the only issue that could arise is the model tending to favour
submaps with more distinct features, which can be remedied through the use of
the lazy quads loss.

• AI should be built and tested for safety: For the masters portion of
the project we will not be doing any real world testing, with the result being
more of a ‘proof of concept’, however taking into account the potential safety
hazard of faulty navigation we will hopefully be able to produce a model that
can identify the vast majority of submaps with high certainty, with uncertain
cases being handled by an explainable saliency map provided to the end user.

• AI should be accountable to people: As mentioned, explain ability and
interpretability of the model will be handled via the use of saliency mappings
provided to the end user which they can then decide to agree/disagree with,
important to note is that this model will be a decision support and thus the
final decision of how to navigate should still be handed to a human navigator.

• AI should incorporate privacy design principles: The only situation
in which this principle would apply to our project is if the models predicted ge-
olocation could be intercepted somehow, otherwise as we are only dealing with
location based data privacy should not be much of a concern here.

• AI development should uphold high standards of scientific excel-
lence: In terms of the models raw performance we must make sure to at least
match that of the original PointNetVLAD model.

• AI should be made available for uses that accord with these prin-
ciples: The intended final product serves as a backup to a technology that
already exists, that being GPS, therefore it should not be possible for it to be
used for any purposes that GPS can’t already be used for.
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3 Data

3.1 Details

Unfortunately, outside of automated car research large databases of 3D LIDAR
scans are quite rare and due to limitations imposed on us due to COVID creat-
ing a reference map based on a significant portion of the UK coast is out of the
question.

As a result we have decided to fall back on the same benchmark datasets used
for PointNetVLAD [1] which is made up of four datasets, the first being based
on the Oxford RobotCar database [15] and the other three consisting of in-house
LIDAR generated datasets of a University Sector, Residential Area and a Busi-
ness District respectively over multiple different runs.

Because we are training the model more for experimental purposes rather than
performance, we have decided to stick to just the Oxford RobotCar database in
order to simplify things.

Figure 22: Example of a street converted into pointcloud form from the Oxford
RobotCar website [15]

On the github page for PointNetVLAD the overall reference map for each
run has already been divided smaller submaps which are then stored in a folder
in binary file format where the filename is equal to the timestamp at which they
were scanned, folders are generated on a per run basis of which there were 45
in total.

Each submap covers 20m of car trajectory, and, in the case of submaps in-
tended for training, were scanned 10m apart form one another thus they are
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not mutually disjoint whereas testing submaps are mutually disjoint.

For each run, GPS locations of each submap within the run are stored in a single
csv file which contains the northing and easting coordinate for each timestamp.

3.2 Challenges

The main challenge with using this dataset as a backup to a potential future
LIDAR dataset of shoreline scans, is that we don’t know whether or not the
model will act/perform differently once such a dataset is introduced during the
follow-up PhD project.

For example, there may be a big difference between how the PointNetVLAD
model will handle pointclouds of shoreline topology versus how it handles point-
clouds from Oxford RobotCar database which typically contains features such
as terrace houses.

A second challenge is the fact that because the testing submaps are mutu-
ally disjoint, there will likely be no overlap between each query map and it’s
positives, thus their highlighted portions after the application of saliency will
not be shared between each other and therefore it may be worth sticking to just
the training data for saliency evaluation.
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4 Methodology

4.1 Data

4.1.1 Pre-processing

Interestingly, the datasets provided by the creators of PointNetVLAD on github
are already pre-processed, to briefly explain what has been done essentially all
the submaps have had any uninformative ground planes removed and were then
downsampled to 4096 points, with these points being shifted and rescaled within
the range [-1,1].

Figure 23: From left to right: Training reference map viewed in full, zoomed
view of reference map with submap highlighted in blue, image of submap be-
fore removing ground plane, submap after ground removal plus downsampling.
Figure taken from [1]

For generating training tuples, the authors of PointNetVLAD defined simi-
lar pointclouds to be those that were less than or equal to 10m apart according
to there UTM coordinate and dissimilar pointclouds to be those that are 50m
apart or more using the same method.

In the code, this is done by applying a KDTree operation (with average leaf
size of 40) on the submaps based on their northing/easting values in the cor-
responding csv files before performing two queries on the tree, one with radius
10 to define all positive submaps and another with radius 50 to define negative
submaps.

Each query submap is then stored as part of a query dictionary, which con-
tains the query itself, a list of all it’s positives and a shuffled list of all it’s
negatives. These dictionaries are stored in pickle files to be loaded later.

To achieve the train/test split, several disjoint regions were defined for each
dataset in order to define multiple smaller test maps contained within the over-
all reference map.
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4.2 PointNetVLAD

4.2.1 Architecture

As the outcome of this project hinges on whether or not saliency could be ap-
plied to the existing PointNetVLAD architecture, we opted to stick as close as
possible to the training parameters used for the original.

However, most of the code for PointNetVLAD provided at the authors github
page was written to work with some version of tensorflow 1.0, hence we have
taken it upon ourselves to piece together a version that is compatible with the
more recent 2.0 version of tensorflow as well as with the keras API.

This version makes use of newly made keras implementations of PointNet and
NetVLAD respectively, the former being constructed by keras team themselves
and the latter being taken from an ongoing project to convert the LOUPE
library [17], a tensorflow toolbox implementing several learnable pooling meth-
ods, from tensorflow 1.0 to 2.0.

With access to these two parts, putting the two together in order to simu-
late the PointNetVLAD model was relatively straightforward and the original
code used for the actual training and evaluation process were easily converted
into jupyter notebook format, mostly by replacing the old feed dict method with
more recent .fit/.predict functions.

As for the layers of the architecture, the model follows the example of Point-
NetVLAD’s architecture seen in Figure 12, this means the input is initially
passed through a transformation network to generate a 3x3 transformation
which is then matrix multiplied with the input, the purpose of which is to
canonicalize the data before feature extraction in order to ensure invariance to
geometric transformations [20].

The input is then passed through two fully connected layers with 64 hidden
nodes, which here has been simulated using the Conv1D operation with kernel
size of 1 and relu activation, the extracted features are then provided to a sec-
ond transformation net to get a 64 x 64 transformation which is then matrix
multiplied by the features for the same reasons as before.

Before passing the features to the NetVLAD layer, we apply three Conv1D lay-
ers with 64, 128 and 1024 filters respectively. Recalling that in PointNet these
would then be passed to a maxpooling function to extract the most notable
features, for PointNetVLAD this has been cut and replaced with the NetVLAD
layer to retrieve a global feature descriptor.

Our NetVLAD layer is then used to produce a global feature descriptor from
the local descriptor learnt from previous layers, which is then L2 normalized
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and reshaped into the correct output format.

Despite wanting to use more recently developed models such as PointNet++
as part of our architecture, the only implementation we could find that worked
with keras required access to a CUDA root directory, which, because the code
for this project was being run on a shared Swansea University machine, we did
not have access to.

4.2.2 Training

Training/Testing tuples are provided to the model by taking a query submap
along with a number of positives and randomly sampled negatives from the
query dictionary, in this case 2 positives and 18 negatives as outlined in Point-
NetVLAD’s supplementary material. Note that the reason for using 2 positives
is so that when calculating the loss, we can simply take the closest one to the
query, ensuring more model stability.

In addition to this, because we opt to use the lazy quadruplet loss in order to
avoid the model becoming biased towards simply finding the distance between
the query and some negative submap, we also provide an additional negative
for each tuple.

The loss is calculated in the same way depicted as in Equation 3, however
in order for it to work with keras which requires a true output y along with a
predicted y′, we had to pass the query, positive and negative vectors to the loss
as y′ before using tf.split (with the split being hardcoded to fit with the input of
1 query + 2 positives + 18 negatives + 1 other neg) to retrieve each component
of the output with the true y being a dummy value passed to the loss during
training.

Each epoch consists of 21711 steps, due to the original code setting the step
number to the amount of training queries divided by the number of batches, the
latter of which we had to set to 1 due to hardware based constraints. At each
step the model is fit to a single training tuple which is provided using the steps
mentioned above, with the models optimizer being Adam and the learning rate
being set to 0.00005.

Every 200 steps, the model is evaluated against 5 test set query tuples and
after every 3000 steps the weights of the model for that epoch are saved.

This process remains unchanged until after epoch 5, where two things occur.
First off, the learning rate now begins to reduce after every 5 epochs, on github
there was a comment in the original code saying that it should be halved but
upon inspection the actual operation consists of multiplying the base learn-
ing rate (0.00005) by 0.9epoch//5, with the minimum rate being 0.00001, this
is essentially a way of preventing the model from overfitting over the course of
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extended training.

The second thing that occurs after epoch 5 is that now after every 700 steps
a set of training latent vectors are generated for all query tuples in the dictio-
nary, these are then used during the retrieval of training tuples to ensure that a
number of submaps within the negative groups are now hard negatives, which
can be found by building a KDTree on a set of random negatives latent vectors
and then querying them against the query submaps latent vector.
The reason we do this is because it helps the model reach convergence at a faster
rate.

4.2.3 Evaluation

For the purposes of our project, which is to evaluate the effectiveness of applying
saliency to PointNetVLAD, evaluating the model itself mostly acts as a check
to make sure that it is working as intended, as the model itself has already been
thoroughly evaluated in it’s original paper [1].

Essentially, the evaluation of the model works by using the trained model to
retrieve the latent vectors of all the queries within the database, then taking
query vectors from a certain run of the test set along with all submaps from
another run of the overall reference map, if after applying a KDTree to the
submap vectors there is a true neighbour pointcloud to the query within 25m
then it is considered to be successfully localized.

After performing this operation for test queries in all of the runs the final metric
used is a top 1% recall, of which the original model achieved 80.31 using Lazy
Quadruplet Loss on Oxford alone.

The reason that top 1% is a good metric for this model is due to the fact that it
only takes into consideration the recall for the top 1% of examples with respect
to the quadruplet loss, meaning that obvious mismatches are not counted as
part of the overall metric allowing us to focus more on how accurate the model
is when performing at top accuracy.

4.3 Saliency Mapping

4.3.1 Application

Once the model is trained, we can test saliency map application using the
method described in Pointcloud Saliency Maps [35], since this method was orig-
inally applied to single pointclouds inputs intended for a classifier, we decided
that it would make sense to apply the method to each pointcloud in our query
tuples individually.

The reason for this is because in order to calculate the gradient of the loss
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per point under a spherical coordinate system, we need to find both the sphere
core and radius which for the former involves finding the median x,y and z
position of all points in the cloud, therefore it makes sense to calculate these
separately due to the clouds varying shapes.

Once the saliency values have been calculated for all pointclouds, we then pro-
pose to visualise them by applying a colour map similar to the continuous jet
colourmap used in RISE [19].

Figure 24: Image of several the commonly used continuous colour maps, where
colours on the right and left hand side of each represent the minimum and
maximum data range of whatever value they are being mapped to respectively.

It may also make sense to experiment with a more sequential colour mapping
scheme, to see if dividing points into more clearly defined lower and higher
importance groups makes the results any more clear.

Figure 25: Several examples of sequential colour maps, essentially gradual
changes are removed in favour of more clearly divided groups.

In addition to simple mappings, we believe it would be a good idea to exper-
iment with some of the critical subset ideas discussed in the Pointcloud Saliency
Maps paper [35] by simply removing points of low importance so that only a
“critical subset” of points is visualised, potentially removing visual clutter.
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Figure 26: Table taken from [35] showing the highlighting and removal of a
critical subset of points from a cloud for the purpose of adversarial training
evaluation, if we were to do the opposite and remove the non-critical subset it
may make for an interesting visualisation method.

Another aspect of the visualisation to take into account is rotation, as point-
clouds are typically visualised using 3D scatter plots if viewed from one angle it
is difficult to discern where each point falls within the overall space due to the
lack of any perceived depth on a computer screen [33].

Because of this we must at least provide the end user multiple views of each
pointcloud at different angles if not a fully interactive display that allows for
full free rotation, in order to more easily view the structure contained within
the plot.

Finally, because we are applying these mappings to the overlapping training
query tuples to find areas where both query and positive pointcloud features
potentially overlap, it may be interesting to see if plotting both clouds in the
same visualisation (with both being positioned at their original GPS coordi-
nates) results in them having clear overlaps with one another.
Because overlapping two clouds could result in a lot of clutter in cases where
they are particularly close to one another, it may be a good idea to augment
this visualisation with the critical subset method.

4.3.2 Evaluation

Once the visualisations appear on screen, we can quantitatively evaluate them
by comparing them to the gestalt principles in order to see if the mapping is
able to highlight areas of importance in a way that a human can easily perceive.

Similarity and proximity will be two key principles that the mappings should
abide by, in the case of the former we would hope to see a good degree of sep-
aration between points with low to high saliency values and, in the case of the
latter, it would be beneficial if points of high importance are grouped together
in such a way that a perceivable feature/structure visible in both the query and
positive cloud (or one that appears in a negative cloud that isn’t in the query)
is highlighted.

It may be that the principles of closure and continuity can be leveraged in
order to aid in perceiving partially highlighted features, although they should
not have to be relied on too much in order to fully comprehend what the visu-
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alisation is attempting to display.

For the critical set visualisation, the evaluation would largely be the same al-
though in this case we would hope for there to be at least one or two perceivable
structures within the critical set that maintain good proximity as a set of sparse
points would likely be difficult for an end user to piece together.

Evaluating the overlapping technique should be far simpler, as the only thing
we truly need to evaluate is whether or not the query and positive do in fact
overlap in areas of similarity, removing clutter from both using the critical set
method may also help with this evaluation in particular.

5 Experimental Results

5.1 PointNetVLAD

Figure 27: Plot of the Average Top 1% Recall of our PointNetVLAD over the
course of 20 epochs.

After training our version of PointNetVLAD it was able to perform at what
we would consider to be an acceptable level by the 20th epoch, where it was
able to obtain an Average Top 1% Recall of 70.1%. However if we compare this
to the 80.31% achieved by the original model with lazy quadruplet loss it is a
significant decrease in performance and certainly not optimal.

The training process is also suboptimal, tending to vary up and down across
each epoch making slight overall improvements until a large dip to 63% at epoch
11 to the highest result of 75% at epoch 13, from which point the result varies
a bit more wildly until epochs 18 through 20 where we stabilise around 70%.

It is very likely that this is either due to certain hyper parameters within the
original model being lost during the conversion to tensorflow 2.0 or it could
be that because the architectures we pieced together have only been recently
developed they may be suboptimal compared to their original counterparts in
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some way.

What’s important about this result however is that we are relatively confident
that our PointNetVLAD architecture is at least working correctly, thus we can
test our saliency mappings with relative confidence.

5.2 Saliency Mapping

5.2.1 Initial Mapping Results

Once PointNetVLAD had finished training, we preceded to visualise a number
of randomly selected training query tuples by calculating the saliency values of
all the points in each individual cloud in the tuple and applying the standard
“plasma” colour map (out of personal preference) to the points based on their
exact saliency values.

Important to note is that in all cases we were able to drastically cut down
the number of clouds visualised per tuple, due to the fact that the majority of
negative cloud samples, along with the worst positive, tended to receive saliency
values of zero for all of their points, thus offering no important information.

For the worst positive this is self explanatory, the lazy quadruplet loss only
uses the best positive for loss calculation so it makes sense that the other would
receive no saliency value, if anything this serves to reaffirm the fact that the
mapping is working as intended.

As for the negatives, it appears that the model tends to place importance on
just a handful of negative pointclouds when calculating loss, which also falls in
line with our discussion of the lazy loss variants earlier where the authors of
PointNetVLAD stated that by using max function in the loss rather than sum,
the contribution of each negative cloud diminished compared to a single hardest
negative.

However, an issue with this is that in cases where the model achieves a loss
of zero by finding an exact positive match for the query tuple, the similar fea-
tures cannot be highlighted due to all saliency values also being zero, but this
isn’t a massive issue as most users will likely recognize that both query and
positive clouds are almost exactly the same.

On the next page is an example of our initial colour mapping results based
on the raw saliency calculations:
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Figure 28: Visualisation of all salient clouds within a sampled training query
with a continuous saliency colour map applied. Each row contains a separate
cloud visualised at angles of 30, 90 and 210 degrees from left to right respectively.

As seen in Figure 28, the continuous colour scale unfortunately fails to high-
light similar features between the query and positive clouds as well as dissimilar-
ities between the query and negative clouds. Instead, it appears that applying
saliency to PointNetVLAD’s output highlights the fact that the model tends
to award a consistent level of importance to all points within clouds that are
deemed to be integral to the overall loss.

If we look at why this visualisation fails by comparing it to the gestalt principles,
then the main issue is that the principle of similarity is not being leveraged in
order to highlight key areas of higher saliency within each individual pointcloud,
instead all the points are effectively put into a single colour group representing
the overall saliency of the cloud itself, which is not very informative as we al-
ready know that these clouds were integral to the loss.
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Because of this single failure, assessing the mapping based on proximity, con-
tinuity and closure is largely pointless due to the fact that the clouds have
essentially taken on their original forms with the only difference being a single
colour applied to all points.

However, mapping colour to raw saliency is thankfully not our only option,
if we take a look back at the Pointcloud Saliency Mapping [35] paper there
were some figures that visualised the map by highlighting only points from the
critical set in red with all other points shown in white, which served to clearly
highlight important shapes within each object that lead to a classification.

Taking inspiration from this, we created an alternative data range by group-
ing points within each cloud into ordinal categories based on the top % of
the saliency values they fall into and then applying a sequential version of the
“plasma” colour map based on this, which we believed would help to ensure
that the key areas/areas of low importance within each cloud themselves can
clearly stand out...
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Figure 29: Visualisation in the same arrangement as the previous figure, a
sequential colour mapping has been applied to each cloud by setting the colour
values of the points within the top 0-20%, 20-40%, 40-60%, 60-80% and 80-
100% to 1, 0.75, 0.5, 0.25 and 0 respectively and then applying the “plasma”
colourmap to achieve a sequential effect.

This mapping was much more successful than the result for applying a con-
tinuous mapping to the raw values, as now we can see that within both the
query cloud and positive clouds the most highlighted features tend to be visible
within the other, in this case two groups of points have both been highlighted
in orange/red (indicating that they belong to the second and first highest top
saliency % groups) between the query and positive cloud.
The negative cloud is also clearly highlighting features that are not present
within the query cloud.

Interesting to note however is that the query and positive are not highlighting
the exact same features within one another, instead they appear to highlight
different features visible within the other respectively, which on one hand allows
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the user to see two examples of why the clouds have been paired but on the
other hand does introduce some inconsistency.

If we evaluate the example given based on the gestalt principles, we can see
that the principle of similarity is now being used to much greater effect to show
which areas are of low, moderate and high importance. The principle of prox-
imity also seems to be satisfied, as each group in the colour map tends to be
closely grouped together allowing key areas to be revealed in full.

Because changing the range of our data to top % was so successful, we wanted
to try and go back to the idea of a more continuous mapping by making another
sequential mapping that maps each point to the top % they fall under, this time
from points that fall within the top 1% to those that only fall within the top
99% (meaning their saliency value and thus importance is lower relative to all
the other points) in increments of 1, which, because there are now a vast number
of smaller groups, should maintain the illusion of being a continuous mapping.
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Figure 30: Visualisation displaying the alternative top % based sequential map-
ping from 1 to 99 described on the previous page, with “plasma” still being the
colourmap of choice.

In our opinion using the top % metric to produce this semi-continuous
mapping is far more successful in reflecting which points have higher/lower
saliency values than the initial attempt and succeeds in the same areas as Fig-
ure 29, highlighting noticeable similarities/differences between the query and
positive/negative clouds.

Because highlighted areas continue to be closely grouped together around certain
features (in Figure 30 structures such as building faces and diagonal rooftops
are quite visibly highlighted) this version mostly retains the sense of proximity
and similarity of the previous mapping.

In addition however, we would argue that the now more gradually shifting colour
gradients create a greater sense of continuity, as the user can now perceive the
shift from low to high importance much more smoothly.
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5.2.2 Visualising Critical Sets Based on Saliency Mappings

Figure 31: Visualisation displaying the same saliency mapping seen in Figure
30 but now with additional critical set version of the query and positive clouds
displayed beneath the original

Now that we know our method of calculating per point saliency can be suc-
cessfully visually reflected by dividing the points into the highest top % they fall
into and applying a standard colourmap, we can begin to experiment further by
first re-introducing the critical set ideas presented in [35].

To do this, we calculated the saliency values and ordered them into top %
groups as described before but now we also create another version of the cloud

46



that cuts out all the points that only fell into the top 51% and below (essentially
leaving all the points that represent the upper half of the calculated saliency
values), the full and critical set version of the query and positive clouds were
then visualised for comparisons sake, this can be seen in Figure 31 above.

By removing the points with lower importance we can now see the most high-
lighted areas with a bit more clarity, in addition the critical set version of the
query cloud specifically appears to reveal a number of points of high importance
that were previously difficult to see in the original, together these points appear
to act as a more sparse representation of the clouds overall structure.

It is likely then that during feature extraction the model likely reduced large
sections of low importance down into sets of key points, whereas structures of
high importance seem to contain a higher concentration of points with large
saliency values.

Between the two we would argue that the positive cloud more successfully high-
lights the most discriminant similarity between itself and the query, that being
the elevated wall-like structure seen in both which is almost entirely highlighted
in red in the positive cloud’s full mapping.

Do note as well that the reason the colourmap does not stay consistent be-
tween the two versions of each cloud is because of the change in data range (i.e.
Areas whose saliency values resulted in them being mapped to the colour orange
may appear as green/yellow in the critical set due to them now falling into the
mid/lower half of the overall value range).

Because once again the query and positive cloud appear to highlight differ-
ing areas of similarity between one another, we thought it might be interesting
to merge the critical sets of both into a single pointcloud to see if they ‘slot’
together to create something similar to the original query...
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Figure 32: Another example of a query and positive cloud being visualised with
a full and critical set version, this time with a final visualisation at the bottom
where both critical sets have been merged into a single pointcloud

As you can see, because both sets serve to reduce their respective clouds
down into the two separate sets of similarities reflected by each ones saliency
map, the merged version of the two at the bottom ends up being extremely
visually similar to the original query cloud at the top.
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6 Conclusion

In conclusion, after setting out to find an architecture capable of performing
pointcloud based place recognition which we could then successfully apply an
informative saliency mapping to, the project has largely been a success. This
is thanks in huge part to the efforts made by Mikaela Angelina Uy and Gim
Hee Lee in developing PointNetVLAD [1], a model which essentially provided
us with everything we were looking for, including the use of the PointNet archi-
tecture for efficient pointcloud deep learning and NetVLAD for learning optimal
global feature descriptors.

Once we found and upscaled this model to tensorflow 2.0 using code from var-
ious researchers (Each of whom will be mentioned in the Acknowledgements
section), we were able to get the model working on the more recent Keras API,
albeit with some performance loss which we may set to fix in our future work.

The second most important discovery was the Pointcloud Saliency Map tech-
nique proposed by Tianhang Zheng and co. [35], which we know works correctly
due to specific interactions with our input such as giving a saliency of zero to
the worst positive during loss calculation.

Once the gradients of the models loss are obtained w.r.t the input, applying
the method was incredibly straightforward (Requiring only 4 lines of code in
python) and although the results were not instantly noticeable when visualising
the raw saliency values, when a new top % based mapping was used the visu-
alisations ability to reflect areas of importance/similarity became more visually
apparent, although it was interesting that the query and positive clouds would
highlight different similarities respectively.

In addition to this, applying a filter on the points based on which do or do
not belong to a defined “critical set” such that only the former are visible al-
lowed for the removal of visual clutter in the form of uninformative features,
and the experiment we carried out with merging the query and positive clouds
critical sets in order to see if their different similarities could “slot together” to
create something similar to the original query also worked in several cases.
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7 Future Work

In terms of future work much of what we are going to talk about are things that
we wanted to cover during this project but could not due to constraints. Firstly,
due to hardware constraints we were unable to update the PointNetVLAD ar-
chitecture via the inclusion of the newer PointNet++ [22] deep learning method,
therefore this is something we would definitely like to explore during the follow-
up PhD as many papers have cited PointNet++ as a complete upgrade to
PointNet.

The second was a user study, which we neglected to mention earlier in the
paper due to our complete inability to carry out because of the current COVID
outbreak separating us from the majority of researchers and staff at the UKHO,
although we were able to evaluate some of our saliency mappings objectively
good qualities according to data visualization and gestalt principles it is of the
utmost importance that we also share these results with our potential end users,
which could especially aid in determining which colour scheme is the most in-
formative or whether we could make use of some hybrid between those visualised.

A key part of Andy Kirk’s book on data visualisation [10] is designing the
visualisation to suit the audience, however at the moment we are unsure what
our audience wants and, because this may be their first time observing a saliency
mapping, it may be the case that they will not initially know this themselves,
thus some back and forth user studies will be crucial going forward.

Thirdly is data, in general although there are a handful of excellent pointcloud
dataset examples such as Oxford RobotCar [15] the actual quantity of these is
low and one specifically aimed at collecting shoreline pointclouds from the point
of view of a sea vessel was simply not available.

If UKHO is willing to use it’s resources to generate several runs of some lo-
cal shoreline which we could then compile into a single dataset, we will be able
to get better insight into what topological features of shorelines stand out most
to the model as well as a look into how the less steady nature of sea vessels due
to moderate to high tide affects pointcloud retrieval.

Fourthly, we would like to go over a type of model that we were only made
aware of after completing our model - that being the Dynamic Graph CNN
[32] which is an exmaple of what is known as a geometric deep learning model
[6]. Geometric deep learning is a field focused on extracting features from data
that is inherently non-Euclidean, with the two major ones being graph based
information and Manifolds (aka Meshes).

In short, by using geometric deep learning methods we can extract features from
higher order 3D data regarding things such as curvature, DGCNN specifically
does this through the use of a new layer developed by the authors called Edge-
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Conv, which can extract local neighbourhood features from pointcloud data by
computing edge features between points in the cloud, effectively treating them
like nodes in a graph.

Figure 33: Visualisation of how EdgeConv works, starts by computing edge
features from input pairs before aggregating the edge features associated with
each vertexes identified edges. Figure taken from [32]

Not only could this provide a further raw boost to model performance
(DGCNN has been found to be on par if not better than even PointNet++),
but it would be interesting to see how the different approach affects our saliency
mapping results, perhaps because it would be taking in more geometric based
features complex shapes would now be more clearly highlighted with even less
outlying high saliency points.

Finally, if all of the above are achieved the next step would be to not only
perform submap based localization but to also regress the vessels true location
within the submap, which if combined with SLAM [8, 5] technology could be
used to create real time local pointcloud maps of the current shoreline, where the
ships coordinates can be continuously updated based on SLAM once a correct
location has been identified with the methods presented in this paper.

Figure 34: Example of the typical SLAM problem, as an object (in this figures
case, a robot) moves through an environment made up of several landmarks we
can approximate it’s general location in real time based on how the landmarks
shift due to motion of the object. Figure taken from [8]
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