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Abstract

The term sepsis is used for an inadequate host response to infection which, if not diagnosed and

treated early, can result in life threatening organ dysfunction. No specific anti-sepsis treatment

exists, instead its management relies on infection control techniques, which are more effective

if the infection is detected early. Machine learning provides a range of approaches to analyse

large patient datasets, potentially finding patterns and trends between features that may not be

clear to clinicians.

We completed an experimental analysis of a random forest, gradient boosted classifier, k-

neighbours classifier and neural network to test their performance classifying patient outcome.

We hypothesised that the neural network would have the highest performance, as tree-based

methods are prone to overfitting. In contrast to our hypothesis, we found that the tree-based

methods performed the best, predicting patient mortality with an average precision of 0.79 and

AUC ROC of 0.82. We partioned our dataset into two subsets D1 and D2, finding a significant

perfomance increase when using D2, suggesting it contained the majority of important fea-

tures. We analysed global feature importance, and identified features comparable with findings

in literature, alongside some different features such as seen by complex care team, and chronic

obstructive pulmonary disease. The novel INVASE method showed promising feature impor-

tances for the neural network model, however it converged such that there was no difference in

feature importances per instance, which could have been a limitation of the small dataset size.
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Chapter 1

Introduction

1.1 Motivations

Sepsis is part of a broad variety of complex disorders characterised by a dysregulated host

response to infectious injury. These disorders are among the worldwide leading causes of

mortality and morbidity [2], and they put a massive burden on healthcare systems [3]. Early

recognition of sepsis is particularly important as research suggests there is an increase in mor-

tality for every hour that treatment is delayed [4] [5].

Machine learning (ML) provides techniques to analyse large and complex patient datasets. Re-

searchers have developed predictive models to predict whether a patient will develop sepsis [6],

however, there is a need for clinical implementation studies to understand how these models

can be integrated within the clinical workflow, and generalise to unseen data.

Interpretability of the model’s predictions is of particular interest to both the clinician and the

patient. For the clinician this helps the model become a clinical tool, helping to augment their

diagnosis. For the patient this builds trust in the decision being made for them. However, few

studies have researched this area.

1.1.1 Objective & Overview

In this document we first present a comprehensive literature review of sepsis, addressing the

clinical challenges, varying definitions and difficulty of diagnosis. We then investigate cutting
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1. Introduction

edge machine learning techniques for sepsis prediction, critically analysing the strengths and

limitations of the wealth of published studies. Once an understanding of popular ML models

has been developed, we present an analysis of interpretability, explainability and feature im-

portance. These areas are particularly important within the medical domain, as being able to

explain an ML model’s output is useful both to the clinician and the patient.

We then present our own project, first starting with clear project definitions and planning, where

alternative design strategies are discussed. We then present our implementation, which starts

with an analysis of a patient dataset, analysing the predictive and interpretable capabilities of

different machine learning models. We then compare these traditional approaches to the novel

INVASE method to decompose individual predictions using actor-critic methodologies. The

goal of our project is to build an understanding of the key attributes useful for early sepsis

prediction, and to find out the benefits and limitations of different interpretability methods. We

indend to use our results to help guide future research into explainable early sepsis prediction

using a time series dataset.

1.2 Contributions

We first contribute a literature review into the background of sepsis, and how machine learning

could aid clinicians in early detection. Then, the main contribution of the project is a com-

prehensive evaluation of the patient outcome prediction capability of five machine learning

models. Concluding with an analysis of the features each model deems are important using the

inherent interpretability of tree based models, permutation feature importance and the INVASE

instance-wise feature selection algorithm.
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Chapter 2

Literature Review

2.1 Sepsis Background

2.1.1 What is Sepsis?

Infections are common, usually with an adequate host response or where a short course of

antibiotics may be needed for bacterial infections. The term ‘sepsis’ is used for an inade-

quate/dysregulated host response to infectious injury, resulting in life-threatening organ dys-

function [7]. In 2017, sepsis was the cause of 19.7% of all global deaths (11 million deaths) [3].

While mortality seems to be decreasing slowly over time, it is still high, with in-hospital mor-

tality at 25-30%, and reaching 40-50% if more serious septic shock is present [8].

No specific anti-sepsis treatment exists, instead the management relies on infection control

techniques including: source control, administering appropriate antibiotics and organ function

support [9]. Even with more than 100 randomised clinical trials testing specific treatments,

none have shown any improvement in mortality [10].

Ferrer et al. found that patient mortality probability increased significantly for every hour

that antimicrobial administration was delayed [5]. Similar studies have researched the effects

of early/delayed administration of norepinephrine for treating septic shock, where a 5.3% in-

crease in mortality was found for each hour of delay in its administration [4]. Furthermore, its

early use is beneficial in restoring organ perfusion [11]. Therefore, for sepsis to be managed

effectively, early recognition is extremely important so that therapeutic treatments available
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2. Literature Review

can be started rapidly.

There is no single biomarker for detecting sepsis and lab testing is often too slow or inaccu-

rate, therefore the difficulty in diagnosing the medical condition has led to overdiagnosis and

underdiagnosis between clinicians. In a study of 1000 physicians, Poeze et al. found that 67%

were concerned there was no common definition, and 83% said it’s likely that sepsis is missed

frequently [12]. They also found that physicians were worried that under-reporting of sepsis

is likely, as the symptoms are easily mistaken for other conditions. Confirming sepsis under-

/overdiagnosis rates is also challenging due to differing sepsis definitions being used [13].

2.1.2 Sepsis Definitions

Early diagnosis of sepsis is a critical challenge that could lead to a significant reduction in

mortality, therefore, since the early 90s experts have come together to define sepsis and it’s

related syndromes.

The Sepsis-1 definition [14] uses the Systemic Inflammatory Response Syndrome (SIRS) cri-

teria, which includes hypothermia or hyperthermia, tachycardia (rapid heart rate), tachypnoea

(rapid breathing) and an abnormal white blood cell count. The Sepsis-1 definition for sepsis re-

quires two or more of the SIRS criteria to be met, and that there is known or suspected infection.

Furthermore severe sepsis uses the same clinical sepsis definition however, is accompanied by

organ dysfunction.

A decade later the definition was updated to Sepsis-2. This was largely the same but focused

in more detail on specific symptoms such as altered mental status, significant edema (swelling

due to liquid) or positive fluid balance. Furthermore, hemodynamic, organ dysfunction and

tissue perfusion parameters were considered.

Problems with Sepsis-1 and Sepsis-2: A patient with sepsis could have a clinically identical

phenotype to a patient experiencing a non-infectious event such as burns or pancreatitis [15].

There was confusion surrounding the Sepsis-2 definition as the old criteria was kept in place,

yet the sepsis definition from the new definition was the severe sepsis definition from the old

definition, terms that were often used interchangeably by clinicians. This led to a mismatching

bias for physicians and researchers [16]. The SIRS criteria is particularly problematic as a

sepsis identification tool as nearly half of all patients meet the SIRS criteria during their stay
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2.1. Sepsis Background

in the wards [17], therefore, it may not be specific enough to accurately classify sepsis.

In 2016 the most recent sepsis definition was published, Sepsis-3. This concluded that the

SIRS criteria was not adequate due to low sensitivity and specificity in its discrimination of

sepsis vs non-complicated infection [16]. In the older definitions, patients with an infection

typically met the SIRS criteria, therefore were diagnosed with sepsis. From the report, sepsis

is defined as a “life threatening organ dysfunction caused by a dysregulated host response to

infection”. The definition has a greater focus on organ dysfunction, utilising the Sequential

Organ Failure Assessment Score (SOFA) and a quicker variant (qSOFA). qSOFA scores are

assessed at regular time intervals, if the score is >2 then an assessment is done for organ dys-

function using the full SOFA system, from there sepsis can be diagnosed. With this definition,

the term ‘severe sepsis’ and the SIRS criteria is no longer used. However, when considering

that early sepsis diagnosis is the key challenge, the SOFA system is not practical to use outside

the ICU for identifying organ dysfunction.

Despite the controversy surrounding different sepsis definitions, particularly the poor clinical

performance of SIRS, a 2 year retrospective study was completed by the Surviving Sepsis

Campaign to evaluate treatment bundle compliance in hospitals. It concluded that mortality

was reduced when bundle compliance was high, and used the sepsis-2 definition for screening

[18]. However, retrospective studies like this are susceptible to patient selection bias, temporal

bias and investigator bias, therefore randomized controlled trials are needed to confirm findings

[19].

2.1.3 How is Sepsis Predicted?

Typically infection diagnosis uses the following types of information [20]:

• Symptoms and clinical signs of a host response, e.g. fever.

• Presence of signs of infection, e.g. purulent (puss) wounds, smelly urine, dysuria and

respiratory symptoms.

• Proven microbiological invasion.

Testing can be done to detect sepsis, however it may take days for lab results to become avail-

able. Therefore, if the patient has developed sepsis then the organ dysfunction may be too

serious by this time. Furthermore, critically ill patients may be receiving antimicrobial treat-
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2. Literature Review

ments, which can render microbial cultures to be negative. Vincent et al. found that 30% of

cultures from infected patients were negative in a large ICU study [20].

A patient may be manually or automatically screened for sepsis. Bhattacharjee et al. discuss

some challenges of both methods. Problems with manual screening [19]:

• Possibility of inaccurate screening results due to transcription and calculation errors.

• Delayed recognition and treatment due to delayed sepsis recognition.

• Generally, a caregiver contacts a physician who will initiate a plan of care, this could

lead to delayed treatment which may affect patient outcome.

Automated screening techniques have the potential to detect sepsis onset earlier than man-

ual screening due to continuous monitoring, however there are still problems with some ap-

proaches. Problems with automated screening:

• For studies which had repeated alerts, alert fatigue or large numbers of false positives

were prevalent [21].

• Need for screening tools that give clinicians meaningful, actionable information, and

that have been validated in a ward setting.

One challenge in prediction is that a patient with sepsis could have a clinically identical phe-

notype to a patient experiencing a non-infectious event such as burns or pancreatitis [15]. This

adds further complexity to a clinical diagnosis for sepsis. The SIRS criteria used in the Sepsis-1

and Sepsis-2 definitions share this same issue.

2.1.4 Sepsis in Wales

Our research is centered around sepsis prevalence in Wales, in particular looking at sepsis

within the wards.

The Surviving Sepsis Campaign (SSC) initially developed the sepsis resuscitation bundle, how-

ever this was typically performed in a critical care setting due to its reliance on complex in-

terventions. In the UK the sepsis six treatment bundle was developed by the UK Sepsis Trust

as a care tool to reduce sepsis mortality. It comprises six tasks: oxygen, cultures, antibiotics,

fluids, lactate measurement and urine output monitoring. It can be delivered by non-specialists,

meaning it is transferable outside of critical care [22].

6



2.2. Machine Learning & Sepsis

A consecutive four year study in 14 Welsh hospital wards concluded that compliance with the

sepsis six care bundle was poor, full completion had a mean of 14% over the four years. There

was no change in patient mortality over the study period [23]. The lack of bundle completion

is a significant concern, potentially reinforcing the issue of sepsis recognition in general wards

[24].

2.1.5 Sepsis Challenges

It is common for studies to use retrospective data, commonly EHR records. However, clinicians

may disagree on whether the same patient is infected. In a single centre prospective study,

Bhattacharjee et al. found that nurses and medical doctors only agreed on the presence of

infection 17% of the time [19]. Therefore, the accuracy of EHR data is unknown for attributes

like antibiotic prescriptions and other interventions for defining infection.

Patients on the ward could develop sepsis at any time, however there are very few completed

studies that are centred around, or use data from, normal hospital wards. This is partly due

to the large, publicly accessible datasets containing ICU data. A 2015 review of severe sepsis

care found that only 1 study from 122 reviewed included patients from the wards [25]. There-

fore, more studies need to include this population to develop sepsis treatments and optimise

outcomes.

Interventional studies which used automated alarm systems utilising the SOFA and SIRS cri-

teria have not shown significant changes in clinical outcome [26] [27], machine learning may

be able to perform better, with earlier detection of sepsis.

2.2 Machine Learning & Sepsis

Machine learning provides a range of approaches to analyse large quantities of data, finding

patterns and trends that may not be clear to humans. In recent years its application to early

sepsis prediction has become apparent, with a large amount of publications using a variety of

novel machine learning models. In a 2020 review of machine learning for sepsis, Fleuren et al.

analysed 28 retrospective studies, which included use of support vector machines, generalised
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linear models, naive bayes, ensemble approaches, neural network methods, decision trees and

LSTMs [6].

2.2.1 Machine Learning

When considering early sepsis recognition, this could be formalised as a classification task,

where a machine learning algorithm outputs a category k that a patient belongs to e.g. like-

ly/unlikely to develop sepsis. The algorithm typically will learn a function f : Rn→{1, ...,k},
where k is a numeric representation of a category. Therefore, for a patient feature vector x,

the model will output a predicted class y given y = f (x). In our implementation, a probability

distribution across classes is learned, where the highest probability is the class selected.

As we have dataset of features and labels, we focus on supervised learning approaches, where

an ML model iteratively learns to classify patients to their specific label, with the goal that the

model will generalise to similar, but unseen data. The accuracy of the model is a typical metric

to measure the performance of the model, where the accuracy is proportion of examples where

the model classifies them into the correct category.

A particularly important and challenging part of developing ML models is performing well on

unseen data. We split our dataset into training/testing subsets, where the model trains using the

training subset, and tests against the unseen testing subset. However, these are still generated

from the same initial dataset, so high performance on the testing set does not necessarily ensure

generalisation against different unseen data. Two key challenges are underfitting: where the

model cannot perform well on the training data and has poor generalization, and overfitting:

where the model performs well on training data but also has poor generalization.

2.2.2 Domain Challenges

Comparability of studies is challenging due to heterogeneous sepsis definitions across studies

using the same datasets. This leads to variation in sepsis prevalence, changing the difficulty

of the prediction task. As sepsis is difficult to define, there are disputes over whether specific

definitions are too inclusive or restrictive. Furthermore Moor et al. found in a review of

22 sepsis prediction studies that only 10% of studies made their sepsis label generation code

8
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public [28], which limits reproducibility. Fleuren et al. share similar concerns, discussing that

sharing code and data will lead to easier data aggregation, model retraining and comparison

into differing sepsis definitions [6].

Medical research poses its own challenges due the sensitive nature of the data. There are few

publicly available datasets, so testing model generalisation is non-trivial.

ML models rely on large, accurate datasets to deliver optimum results. When applied to a

clinical domain, patient engagement for treatment plans and consent for data storage is crucial

for model generalisation and performance measurements. A survey of 300 clinicians found that

70% of respondents reported <50% patient engagement [29]. We believe that the development

of more explainable AI systems may lead to better patient engagement with the decisions and

plans suggested for them.

2.2.3 Integration Within a Clinical Setting

Machine learning techniques show promising results for a variety of different medical appli-

cations, however integrating these models into a clinical workflow is non-trivial. Despite hun-

dreds of proposed early sepsis prediction models, we found few that included an in-hospital

study to clinically evaluated their model. Brown et al. clinically evaluated their naive Bayes

model, which they selected as it deals well with missing values. It outperformed both the

SIRS criteria and nurse triaging in sensitivity, FPR, and AUC (which are defined in Section

3.4.2) [30]. Brown et al. set performance targets that were meaningful to clinicians (8/10 sep-

sis patients identified and less than 15 false positives per day), which they believe helped with

the successful implementation.

2.3 Machine Learning & Interpretability

ML is being applied within critical areas such as criminal justice, financial markets and our

domain of interest - medicine. In these areas, if a model has no ability to explain why a

decision was made, there could be serious consequences such as higher mortality rates due to

incorrect patient care. Caruana et al., among many other researchers, identified this need for

explainable decisions and the benefits to medical domains over two decades ago [31], and now
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that ML performance exceeds humans in many areas, this research area is more important than

ever. In our research domain of sepsis, the condition is extremely hard to predict, therefore

alongside increasing patient and clinician trust in a prediction, the explanation may provide

insights into how to better predict and define sepsis.

Explainable AI (XAI) is a particularly interesting research area. Human-centered design and

collaboration with end users of the ML system will lead to appropriate and effective real-world

applications, yet there is still a gap between cutting edge research and industry deployment.

In addition to better real-world model performance, interpretable decisions mean models/algo-

rithms can be analysed to see if they conform to ethical standards, which may lead to reduced

bias in models [32], and increased fairness of decisions [33]. Furthermore, in 2018 the Eu-

ropean Union’s General Data Protection Regulations were rolled out (with the UK’s indepen-

dence from the EU the GDPR was retained in domestic law as UK GDPR), this law created a

‘right to explain’, where a user has the right to ask for explanation for a decision made about

them algorithmically [34]. Explainability is not just useful for the end user, the developer may

be able to use the information for better debugging and hyperparameter optimisation [35].

2.3.1 Interpretability & Explainability

We have been using the terms explainability and interpretability interchangeably, some re-

searchers identify differences between the two, others see them as the identical. Lipton identi-

fies the challenges in differing definitions, suggesting that many papers discuss interpretability,

yet few define it, so their claims resemble science, but are not backed up with any evidence [36].

Miller defines interpretability as ‘The degree to which a human can understand the cause of a

decision’ [37]. Kim et al. define it as ‘The degree to which a human can consistently predict

the model’s result’ [38]. There is no single mathematical definition of interpretability [39],

which reinforces that it must be approached from a human perspective, focusing on the needs

of the clinicians, judges, stock traders etc. who are using the model.

2.3.1.1 Trust

Trust is an important concept in the application of our research. For clinicians with expert

knowledge, explainable decisions may build their confidence in the model, whilst making the

10
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patient feel more at ease. ML models have shown superhuman performance in many domains,

however high accuracy does not necessarily mean the model is trustworthy. By this logic, trust

could be better formalised as confidence in model performance when training and deployment

objectives diverge [36] - for example, a crime rate prediction model that does not perpetuate

the racial bias present in its training set.

2.3.1.2 Transparent Models vs Post-hoc Interpretations

Some papers approach interpretability from understanding how the model works internally.

For example, decision trees can be interpreted easily by humans for simple problems, where a

small tree can be traversed by hand to see what decisions are made. There is no set definition

for a transparent model, we could understand what a model’s parameters are representing, or

what situations the algorithm will converge, or whether a human can feasibly examine the

model.

On the other hand, post-hoc interpretation methods investigate explaining predictions for a

model whose inner workings are hidden, or not completely understood; these models are re-

ferred to as black boxes. An interesting example is human decision making, typically a human

can convey useful information as to why they performed an action or made a certain decision,

yet our brains are black boxes - from this example Lipton suggests one purpose of interpretation

is conveying any kind of useful information [36].

2.3.2 What Can XAI Do?

The results of an XAI model/method typically fall under [39]:

• Feature summary statistics/visualisations:

– Understanding which features are most relevant to an outcome or model output.

Statistics could include single scores per feature (feature importance).

– Visualising feature summary statistics.

• Model Internals:

– What is happening inside the model e.g. Interpretation of weights, learned tree

structures, visualisation of feature detectors in CNNs.
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• Intrinsically interpretable models:

– Models that can be interpreted to some extent, e.g. decision trees.

– Approximating black box models with an interpretable model (globally or locally).

For a clinician, being presented with feature summary statistics is potentially the most useful

from the list. Visualisations could also be used to help the clinician explain the decision to the

patient.

2.3.3 Explainable Machine Learning for Clinicans

There are currently rule-based assistive tools deployed in clinical settings such as early warning

scores like NEWS [40]. Rule-based algorithms are somewhat transparent by nature, however

machine learning models which have the ability to capture relationships between features, can

achieve more accurate results [41]. Therefore research into XAI for clinical ML models is

particularly important.

Tonekaboni et al. performed a 2019 study of clinicians/stakeholders to identify specific aspects

of XAI that would help to build trust, with the aim to increase adoption and sustained use of

ML in healthcare. Clinicians expressed the need for the relevant model features involved in the

prediction, as well as information about the context the model works in; such that awareness of

situations where the model will not perform well can be identified. Interestingly, the majority

of clinicians thought that a lower accuracy model would be acceptable if there was clarity in

why it underperformed [42].

2.3.4 Instance-wise Feature Selection

One particularly important XAI research area is instance-wise feature selection. This method-

ology allows for model interpretation for a specific instance or subpopulation, as opposed to

other methods that may interpret the model globally [43] (choosing the same subset of features

for all samples). In a clinical setting this is essential as a decision needs to be explained per

patient. Additionally, for research, the ability to decompose predictions for subpopulations of

patients could be particularly insightful - a relevant example is the heterogeneous population

of heart failure patients [44]. Furthermore, high dimensional data typically has both a large

12



2.3. Machine Learning & Interpretability

number of features available to use, and a large number of of records. This quantity of data

is particularly challenging to present to a clinician to explain a decision. Feature selection

techniques can help reduce the number of features by identifying what is most important. This

technique is useful in reducing overfitting during model training and increasing the effective-

ness of the deployed model. For example, in a clinical setting there will be less information

presented to explain a decision, making it more understandable for the clinician and the patient.

2.3.5 ML Models & XAI Methods

In this section we describe the background behind the interpretable models and methods we

intend to implement.

2.3.5.1 Neural Networks & Deep Learning

The INVASE method described below in Section 2.3.5.5 utilises deep, fully connected, neural

networks. In this section we will provide a brief background into how these models work, and

discuss why they are so powerful.

Overview

Neural networks describe a range of machine learning models that all share a similar structure.

They are inspired by the human brain, and loosely mimic how neurons signal to each other.

For our implementation we consider fully-connected feedforward neural networks which are

sometimes referred to as multilayer perceptrons. Similar to the goals of machine learning

models we discussed in Section 2.2.1, the goal of this network is to approximate a function,

for example the classification problem y = f ∗(x). The neural network defines a mapping y =

f (x;θ), then, during training, learns values for the parameters θ that best approximate the

function.

Network Structure

The networks are comprised of layers, where each layer represents a function, and the order of

the layers defines how the functions are chained together. For example, a three-layer network

with first layer f (1) and so on, forms f (x) = f (3)( f (2)( f (1)(x))). The first layer in a network

is the input layer, the final layer is the output layer, and all layers in between are referred to as
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hidden layers. We can formalise the parameters θ as consisting of weights w and biases b. The

hidden layer(s) of the network consist of perceptrons (often called nodes), where each node

receives all inputs from the previous layer. The inputs are multiplied by the weights, then the

perceptron computes the weighted summation of its inputs, with the addition of the bias to add

more control to the function. The output of the perceptron is input to an activation function g

which we discuss below. Therefore, the perceptron receiving the initial feature vector x can be

defined as:

g(
n

∑
i

wixi +b)

The number of layers in a network correspond to its depth and the number of nodes in a layer

correspond to its width. The concept of deep learning refers to networks with large depths

and widths. Often these networks are the cutting-edge in representing increasingly complex

functions across many domains.

Activation Functions

An activation function g is applied to the output of a node, before it is used as an input in

the next layer. The perceptrons are already performing linear transformations on their inputs,

therefore a non-linear activation function is used so that neurons differ in behaviour, and so the

network can model more complex functions.

The current, recommended activation function is the rectified linear unit (ReLU):

g(x) = max(0,x)

For the weighted summation of inputs to a node, the ReLU function rectifies negative values,

changing them to zero, while retaining the positives. As Figure ??? shows, the ReLU func-

tion is nearly linear, therefore retains the properties of easy optimisation with gradient descent

methods [45]. Their overall computational speed is also high, as they don’t compute exponen-

tials and divisions compared to alternative activation functions [46].

We utilise the ReLU function within the hidden layers of our network, however our output

layer needs to output a range of values we can use as the probability for selecting a certain

class. In a binary classification problem the sigmoid function is appropriate here:

S(x) =
1

1+ e−x
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Sigmoid functions can return real values in the range (0,1), therefore an output layer with two

nodes using a sigmoid activation can represent probabilities of choosing two classes.

Training

After the inputs are fed forward through the network, the output layer represents the probability

of a certain class being predicted. We are considering a supervised learning problem, where for

each instance in the dataset we have a ground truth label. Therefore we formalise the prediction

error using a loss function L(y, ŷ), where y denotes ground truth label and ŷ denotes prediction

label. Once L has been computed, backpropagation is used to calculate the gradient of L with

respect to the weights of the network. Then using this gradient, an optimisation method such

as stochastic gradient descent is used to iteratively update the weight values to reduce the loss

function.

Our problem is a binary classification problem therefore we will use cross entropy with N = 2

classes as our loss function:

L(y, ŷ) =−
N

∑
i=1

yilog(ŷi)

The larger the difference between y and ŷ, the larger the cross entropy loss, therefore by min-

imising this equation, the network should iteratively improve its predictions.

2.3.5.2 Decision Trees & Random Forests

Tree-based methods work in both regression and classification situations by repeatedly splitting

data based on certain values for features in the dataset. This creates a tree structure with

intermediate subsets in internal nodes and final subsets as leaf nodes. The final prediction is

calculated from the average outcome of the training data in the leaf nodes.

There are different algorithms to grow a tree, where the algorithms automatically decide split-

ting points for features, optimum features to split on and the topology of the tree. In this

section we focus on CART [47] to formalise a decision tree algorithm for classification prob-

lems. CART partitions a feature space using recursive binary splitting. This is advantageous

as the whole feature space partition is fully described by a single tree [48], meaning the model

is inherently interpretable. Interestingly, Hastie et al. also identify that the tree representation

mimics how a doctor thinks - for example a tree structure could use patient characteristics to

arrange the population into groups of low and high outcome.
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Formally, the relationship between predicted outcome ŷ and input features can be described as:

ŷ = f̂ (x) =
M

∑
m=1

cmI{x ∈ Rm}

Where I denotes the identity function such that if instance x is a member of the subset Rm,

1 is returned, otherwise 0. Therefore, if an instance is classified into subset Rl , it’s predicted

outcome ŷ = cl , which is computed from the average of all training data in the leaf node Rl .

To optimally choose the subsets, the CART algorithm chooses a cut-off value to minimise the

Gini index of the class distribution.

Regarding interpretability, the model is inherently interpretable. For an instance you can start at

the root node and follow the prediction down to the leaf nodes - since each inner node contains

a split, the edges denote which subset it belongs to. For smaller trees this is feasible, however

decision trees have shown good performance on large, complex datasets, where this technique

may be too time consuming, and not useful to interpret as a human. For these situations,

feature importance can also be calculated by analysing the Gini index reduction over all splits

the feature was part of, then comparing this value to the parent node. These importances can

be scaled such that they represent a share of the overall importance.

Decision trees exhibit fairly high variance, where small changes in the training dataset result

in distinct trees. Random Forest models are a collection of random decision trees, where

their individual results are aggregated into a final one. They help to reduce variance and limit

overfitting through using random subsets of features, and training on different samples.

Decision trees have also become the basis for gradient boosting algorithms, which have out-

performed neural networks in many domains. Kearns first defined the gradient boosting goal in

1988, describing a ‘ hypothesis boosting problem’ where there could be an ‘efficient algorithm

for converting relatively poor hypotheses into very good hypotheses’ [49]. In general, decision

trees are specifically constrained such that they remain ‘weak learners’ (typically performing

slightly better than random chance). Then, decision trees are added to an ensemble model se-

quentially, using gradient descent to minimise loss when new trees are added. Gradient descent

is performed by adding a tree to the model that is parameterized, then updated, such that the

loss is reduced.
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2.3.5.3 K-Neighbours Classifier

A K-neighbours classifier works based on the assumption that data points that are close to

eachother, based on some distance metric, are similar. For an unseen data point the algorithm

attempts to classify it based on the label from k training samples that are close in distance to

it. Despite its simplicity the K-neighbours algorithm is versatile in solving classification and

regression problems.

2.3.5.4 Permutation Feature Importance

Permutation feature importance (PFI) is part of a group of model agnostic methods. These

methods are not dependent on the type of model, therefore, they are flexible and can be used

with less interpretable models such as neural networks. Permutation feature importance works

by permuting the values for input features, then measuring the change in model error. It was

first proposed by Brieman for random forests [50], then was developed into a model agnostic

method by Fisher et al. [51]. If model error increases after permutation then that feature is

deemed as important since the model would have relied on it for prediction, otherwise, if the

error remains the same, the feature is deemed as unimportant. PFI is a global feature impor-

tance method, therefore for our recurring example of decomposing specific patient instances it

may be less useful than other methods.

2.3.5.5 INVASE

Overview

For problems with large datasets available, using too many variables with too few samples

can lead to overfitting, which will reduce the predictive performance of the model. Alongside

this, large dimensionality can mean there is too much information to present to an end user.

Understanding the features that are important to a model or an outcome being explored is

critical to improving interpretability of predictions and predictive performance. The INVASE:

‘INstance wise VAriable SElection using neural networks’ is a novel instance-wise feature

selection method consisting of three neural networks [1].

The INVASE model is an ensemble model consisting of:
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• Selector Network

• Predictor Network

• Baseline Network

Figure 2.1: Block diagram for INVASE: instance wise variable selection using neural networks. The
outputs of the predictor and baseline networks are minimised using a Kullback–Leibler divergence, the
selector network is then optimised to select the optimum features per instance [1].

The architecture is based on the actor-critic methodology, where one network makes a deci-

sion, then another network critiques the decision by analysing the accuracy. In this model, the

selector network is the actor, and the predictor network (aided by the baseline network) is the

critic. One challenge of an actor-critic approach is that the variance in gradient estimates is

typically high. To mitigate this, it is common to use baseline networks as they can be used

to reduce this without adding bias [52]. In the INVASE architecture the baseline network is a

fully connected neural network, and takes in all the features for the instance as input.

Methodology

The selector network receives all features from an instance, then outputs a vector of selection

probabilities. Based on these probabilities, the features are sampled such that a subset of the

features is output, which can be denoted as x(s). x is the feature space for an instance and

s is the selection vector where s = {0,1}d corresponding to the ith dimension feature being

selected when si = 1, otherwise it is not selected. The predictor network is a fully connected

neural network that takes as input the suppressed feature vector x(s) and its corresponding
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selection vector from the selector network. It outputs a probability distribution over the output

space denoting which class should be predicted. The parameters of the selector network are

iteratively updated to obtain an optimal subset of features for a certain instance x. Therefore,

formally, for a d-dimensional feature space X = X1× ...×Xd , let X = (X1, ...,Xd) ∈ X be a

random variable. In instance wise feature selection, the goal is then to find an optimal selection

s for a certain realization x ∈X of X . Therefore a selection function can be defined as S :X 7→
0,1d , such that:

Ŷ | X (S(x)) = x(S(x))) d.
= (Ŷ | X = x)

In the above equation, d.
= denotes distributional similarity, Ŷ denotes label from predictive

model, and S(x) is minimal, where it contains the fewest 1s. Zhong & Zhang summarise IN-

VASE’s aim well - ‘to choose a subset (x,s), upon which the performance surpasses that based

on all features x as much as possible’. Below, we summarise the methodology in pseudocode.

Algorithm 1: INVASE Methodology Pseudocode
Input : learning rates α,β > 0, mini batch size nmb > 0, dataset D
Intialize: parameters θ ,φ ,γ

1 while Converge do
2 Sample mini-batch from dataset (x j,y j)

nmb
j=1 ∼D ;

3 for j = 1, ...,nmb do
4 Calculate selection probabilities ;
5 Sample selection vector ;
6 for i = 1, ...,d do
7 Calculate loss l̂ j(x j,s j) ;
8 end
9 Update selector network parameters θ ;

10 Update predictor network parameters φ ;
11 Update baseline network parameters γ ;
12 end
13 end
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Chapter 3

Project

In this section we first define our project, discussing the problem context and design alterna-

tives. We then explore ethical considerations and how our project engages with concepts of

responsible innovation. Finally we present our results and evaluation, ending with a discussion

and exploration of future work.

3.1 Introduction

The aim of this project is to explore a dataset of patients with a high degree of clinical suspi-

cion of infection. Firstly, an exploratory data analysis will provide insights into the relation-

ships within the dataset, while also allowing us to find any errors or outliers. Then a variety

of predictive models will be tested against different labels from the dataset, with the goal of

determining key features important in sepsis diagnosis, alongside understanding how differ-

ent types of classification models perform in predicting patient outcome. A multivariate cox

regression analysis has already been completed on the dataset to analyse risk factors for mor-

tality in sepsis patients [23]. To extend this, we are particularly interested in using a non-linear

model and finding feature importance for it’s predictions. Using the novel INVASE method,

which allows for instance-wise feature importance, we can analyse specific patients, while also

gaining different insights from the more complex, non-linear model.

The focus on feature importance and interpretability of ML models is driven by a people-

first approach. Without the ability to decompose a prediction there is very little opportunity
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to deploy a successful model in a clinical setting. Alongside this, exploration into feature

importance could lead to interesting insights to help the research effort into what causes sepsis,

particularly when using non-linear models that are capable of learning complex relationships

in the dataset.

3.2 Responsible Innovation

Once our initial project plan and aims were defined we considered how to positively align

with the ethos and themes behind responsible innovation. In particular, we considered the

Anticipate and Reflect sections from the EPSRC AREA Responsible Innovation Framework.

Anticpate: The intended impacts of the project are to improve sepsis prediction by using inter-

pretable machine learning models, alongside interpretability techniques for black box models

to find important features common in subpopulations of patients with high suspicion of sep-

sis. In theory, machine learning techniques are uniquely suited to the problem of early sepsis

detection, and promising results have been described in papers implementing a variety of dif-

ferent models. Therefore, a key social impact could be improved sepsis mortality rates, whilst

reducing the economic burden on healthcare systems due to the deployed ML system reducing

the number of clinicians needed to monitor patients at risk of sepsis.

However, there is no guarantee that patients will embrace and trust these models. Further re-

search is essential in understanding how patients and clinicians interact with deployed models,

and how they can slot into the clinical workflow. Particularly older adults, who are more vul-

nerable to sepsis due to their age, may be more cautious to embrace technology. For examplem,

in a small study, Vaportzis et al. found that older adults had reduced confidence in technology

that was too complex [53].

On the other hand, over-trusting the models could also be problematic. There are numerous

examples of models exhibiting bias from lack of diversity in their datasets, perpetuating eco-

nomic, social, racial and gender inequality.

Reflect: The project has two main motivations, both driven by explorations into XAI tech-

niques. One is to improve the chances for clinical deployment of models, the other is to enhance

understanding of sepsis by using state-of-the-art machine learning models to find relationships
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in clinical datasets that could help diagnose the complex disease. However, machine learning

for sepsis is not a new area, our novelty comes from the opportunity to use private clinical

datasets.

The potential impact of clinical deployment of models could be life-changing, however we are

assuming that the necessary frameworks for model evaluation are in place within the NHS and

other health care services across the globe. Even if the research into XAI and clinical work-

flow has been done, without the necessary infrastructure these models will not be successfully

deployed.

3.3 Related Work

The background to the motivations behind predicting sepsis and the machine learning methods

used are described in Sections 2.1 and 2.3.5 respectively. In this Section we will describe

related work feature such that we can ensure our project is innovative.

Aushev et al. researched feature selection using the European ShockOmics dataset, with fea-

tures to help predict mortality due to septic and cardiogenic shock in 75 patients [54]. They

utilise the analysis of variance (ANOVA) F-value, random forest feature importance and recur-

sive feature elimination with support vector machines. Their feature selection was performed

on the training set only, however they used performance and stability scores to suggest which

feature selection techniques might be more accurate. To help find the most promising features

in the prediction, they split their time-series dataset into subsets such that the features were

grouped based on their importance at certain times, or shared low missing values. They base

their experiments on the assumption that the subset with the best performance also are the most

promising for mortality prediction. The random forest models showed the best performance

across all subsets.

Using a dataset of 364 patient electronic health records, Chicco & Luca utilised ML to predict

survival, septic shock and numerical SOFA values [55]. However, their labels suffered from a

large imbalance, therefore only a multilayer perceptron for predicting survival achieved >0.7

true positive and true negative rate. They then utilised a random forest model for feature impor-

tance for septic shock prediction and compared its results to the statistical approaches: Pearson

correlation coefficient, student’s t-test and p-values. They found that the random forest labeled
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several important features that follow recent scientific discoveries that were not identified by

the statistical approaches. However, their study was limited by their poor model performance

and small dataset.

In contrast to these studies performed on small patient datasets, Guan et al. used a gradi-

ent boosted classifier to achieve the top result in the Sepsis Prediction DII National Data Sci-

ence Challenge which used >100,000 patient records [56].The model’s performance was robust

across care settings, age-groups, genders and races. A SHAP analysis, where the game theo-

retic shapley values approach is applied to feature importance, was completed, finding that the

most recent records for heart rate and respiration play a key role, even when looking far ahead

of time. A key finding is that the model is capable of capturing signs of early sepsis before the

SIRS criteria can be used to make a diagnosis.

3.4 Project Definition

3.4.1 Dataset

The dataset we used was collected over four years, across 14 acute Welsh hospitals. Data was

collected over a 24 hour period, where data collectors would screen patients who had a NEWS

score of ≥ 3, and their clinical suspicion of infection was documented in medical or nursing

notes. The dataset is fairly small, with 1651 patient records. However, as it was hand collected,

the data quality is likely good.
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Table 3.1: Table showing patient demographics and clinical characteristics, attributes shown are a subset
of the full dataset. [] represent interquartile range, () represents proportion of dataset who are within
that category.

Patient Demographics Count/Median Type Description
Age (Median) 73 [18-103] Continuous Age of patient
Sex (Male count) 799 (48.4%) Categorical Sex of patient
Survival up to 30 days count 1349 (81.7%) Categorical Survival up to 30 days
Median Clinical
Characteristics Count

COPD 482 (30.3%) Categorical
Chronic obstructive pulmonary
disease

Diabetes 333 (20.9%) Categorical Type 1 or 2 diabetes
Drug Abuse 31 (1.9%) Categorical
Heart Failure 183 (11.5%) Categorical
Hypertension 557 (35%) Categorical High blood pressure

Ischemic heart disease 227 (17.4%) Categorical
Heart disease caused by narrowed
arteries

Liver disease 59 (3.7%) Categorical

Neuromuscular 52 (3.3%) Categorical
Disorders affecting peripheral
nervous system

Recent Chemo-therapy 74 (4.7%) Categorical

Dalhousie Clinical Frailty
Score (Median)

5 Categorical
1 = Very fit
5 = Mild frailty
9 = Terminally ill

DNA-CPR 414 (26.1%) Categorical
Do not attempt cardiopulmonary
resuscitation

NEWS >= 6 486 (29.4%) Categorical News score above 6

The majority of the dataset is categorical, with data on co-morbidities, patients’ pre-admission

characteristics, clinical frailty score, patient management actions, laboratory and physiological

metrics.

We partition our dataset into two subsets D1 and D2, where D1 contains patient demographic

and comorbidity information, and D2 contains information on clinical criteria, e.g. NEWS &

SIRS scores, admissions source, and antibiotics.
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3.4.2 Methodology

Our study aims to analyse the differences between machine learning models regarding both

performance and interpretability when predicting patient outcome for the dataset. We hypoth-

esise that a neural network model will have better accuracy as they are typically able to infer

complex relationships in the data through their non-linearity. Tree based methods are partic-

ularly vulnerable to overfitting [57], therefore the neural network may be able to generalise

better.

From our literature review and related work we identify the need for research into explainable

neural network approaches, we found few studies that apply an explainability method to a neu-

ral network model. The domain of our project is uniquely suited to instance-wise explanations,

whereas a large amount of existing research focuses on global feature importance. Modern

research such as Guan et al.’s 2021 study explore explanations per patient, alongside global

feature importance, therefore we hope to differentiate from this by including instance wise ex-

planations for neural networks, and similarly test gradient boosted trees performance on our

dataset, as they showed promising results in literature.

We will first perform an exploratory data analysis on the dataset as a whole. Initially looking for

relationships between features with the goal to reduce the feature set. We can do this by looking

for highly correlated features, or features with a high proportion of missing values. We intend

to use the Pandas Profiling tool to generate descriptive and quantile statistics, correlations and

missing values.

The dataset contains missing values, therefore imputation must be done before training most

ML models. As the dataset contains a large proportion of binary categories, we will experiment

with common imputation methods such as using the most frequent or a constant value. At

this stage we will also preprocess the data by normalising continuous attributes, and encoding

numerical labels for non-numerical attributes. Inspired by Aushev et al. we intend to partition

our dataset based on categories of features [54], then we will test our models performance and

feature importance across all subsets, and the dataset as a whole.

With the imputed and pre-processed data we can test different ML models. We intend to test the

following models: random forest, gradient boosted trees, K-neighbours classifier and a fully

connected feedforward neural network. To quantify performance across the different classifiers
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we will compare ROC-AUC and precision-recall curves, then analyse the Matthews correlation

coefficient (MCC), F1 scores, accuracy, true positive rate and true negative rate. The equations

for calculating these metrics are formalised below, where T P,T N,FP,FN = true positives, true

negatives, false positives, false negatives respectively:

• True Positive Rate (TPR) = T PR = T P
T P+FN

• False Positive Rate (FPR) = FPR = FP
FP+T N

• True Negative Rate (TNR) = T NR = T N
T N+FP

• False Negative Rate (FNR) = FNR = FN
FN+T P

• ROC/AUC = ROC curve is T PR vs FPR at different classification thresholds. An AUC

value can be computed to measure the area under the curve, giving aggreagated perfor-

mance across all classification thresholds.

• MCC = T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

• F1 Score = T P
T P+ 1

2 (FP+FN)

• Precision = T P
T P+FP

• Recall = T P
T P+FN

• Precision-recall Curve = Precision vs Recall for different classification thresholds.

• Accuracy = T P+T N
T P+T N+FP+FN

The MCC value is a useful measure of the quality of binary classification tasks, and takes into

account all classification types. It’s value is in the range [−1,1], where 1 represents a perfect

prediction,−1 represents inverse prediction, and 0 a random prediction. F1 score is a weighted

average of precision and recall, its best value is 1 and worst is 0.

We are also interested in differences between interpretability. Random forests and gradient

boosted trees are inherently interpretable so we can analyse their global feature importance. For

the K-means classifier we will use permutation feature importance, and for the neural network

we will use the novel INVASE method, where we can explore interpretability per patient or per

patient subgroup. We will group patients into frailty groups for subgroup analysis and look for

extreme examples to see if the important features differ.
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3.4.2.1 Design Alternatives

In addition to traditional exploratory data analysis, topological data analysis techniques present

a suite of methods to understand the shape of data. In particular, the mapper algorithm maps

high dimensional data to a lower dimension space (typically via PCA), then forms sets of

overlapping intervals which it uses to cluster points. Then a graph is constructed if two clusters

share common points. However, applying the mapper algorithm to our majority categorical

dataset is non-trivial, as some metric for representing distances between patients needs to be

devised.

We also considered utilising ensemble models in an attempt to improve predictive accuracy.

Whilst this approach may yield better predictive accuracy, we wanted to focus on simpler

models that may be easier to interpret than complex models, and potentially have more chance

of clinical application.

3.5 Exploratory Data Analysis

The dataset contains 99 features in total. Firstly, we removed any attributes that were not

useful, such as, IDs and hospital names.

We then counted the missing values in each column as we want to remove columns with a high

proportion of missing values. Below we plot the descending proportion of missing values for

the top 35 features.
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Figure 3.1: Visualisation of the top 35 features in the dataset, sorted by percentage of missing values.

We remove the features with >40% missing values. We still have a large feature space so we

can analyse correlations between variables. For optimum results across many machine learning

methods, it is desirable to have feature sets that are highly correlated with the target label, yet

uncorrelated with each other [58]. We removed one feature from pairs of highly correlated

features such as diabetes and insulin, as we want to try and simplify the feature set. And we

identified and removed groups of highly correlated features that were not correlated with our

chosen labels.

We are interested in predicting patient outcome so we are using labels relating to survival and

mortality. The study initially had a 30 day follow up for patient outcome, then follow up was

increased to 90 days. For our labels we will test performance on both the 30 (Mortality30) and
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90 (Mortality90) day follow up mortality data.

We then analysed the distributions of specific features between the positive and negative sub-

groups of our labels. The Mortality30 class contains a class imbalance, where approximately

80% of patients survived. whereas the Mortality90 class is more balanced, where approxi-

mately 55% of patients survived.

Figure 3.2: Visualised dataset distribution for imbalanced survival labels.

A. Distribution of sepsis six completion vs
frailty score for the imbalanced positive class.

B. Distribution of sepsis six completion vs
frailty score for the imbalanced negative class.

Figure 3.3: Visualised dataset distribution for balanced survival labels.

A. Distribution of sepsis six completion vs
frailty score for the balanced positive class.

B. Distribution of sepsis six completion vs
frailty score for the balanced negative class.
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For the Mortality30 label we can visualise the class imbalance as shown above in Figure 3.2,

the darker values represent more patients with those specific values. Two features we hypoth-

esise are important in predicting mortality are the clinical frailty score and the sepsis six total,

which represents how many components of the sepsis six treatment bundle have been com-

pleted. Sepsis six total is particularly interesting, as higher values suggest a higher likelihood

of sepsis, which itself has a high mortality rate, however the completion of the treatment could

reduce the mortality. The positive distribution in Figure 3.2 represents patient mortality, in

comparison to the negative distribution we see that the frailty score contains higher values,

and there is no clear difference between the sepsis six completion totals. Figure 3.3 shows

the comparison between the more balanced Mortality90 label. We see the same pattern for

frailty score, however it is more defined here. The positive class shows high sepsis six values

across all levels, potentially increasing the likelihood that an ML model uses this feature for

prediction.

Figure 3.4: Confusion matrix comparison for a random forest classifying patient outcome for different
labels.

Confusion matrix comparison for a random forest classifying Mortality30 and Mortality90
labels. Note that the positive class for Mortality30 represents survival in this visualisation.

A. Random forest performance on the test set
using the imbalanced class label.

B. Random forest performance on the test set
using the balanced class label.

We then tested the performance of a random forest classifier using these two labels, which

is visualised in Figure 3.4. For the imbalanced Mortality30 label We found that the model

learned to predict that most patients survived. As this was the majority class, the model was

still achieving fairly high accuracy over the whole dataset, whereas in reality this would not

be useful. We found this overfitting to be present in all models we tested. We compare this to

the balanced Mortality90 label, where the model was learning to distinguish between the two

classes. Due to the extreme overfitting we decided to use the Mortality90 label for our analysis.
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3.6 Results

3.6.1 Model Evaluation

Model MCC F1 Score Accuracy AUC ROC AP
RF (0.06, 0.46, 0.51) (0.41, 0.66 , 0.70) (0.56, 0.74 , 0.76) (0.54, 0.80, 0.82) (0.42, 0.76 , 0.78)
GBC (0.14, 0.49 , 0.49) (0.41, 0.69, 0.70) (0.61, 0.76, 0.75) (0.63, 0.81, 0.82) (0.50, 0.79, 0.79)
GBC (XG) (0, 0.36, 0.44) (0.40, 0.62, 0.67) (0.52, 0.69, 0.73) (0.53, 0.78 , 0.81) (0.42, 0.76, 0.77)
K-Neighbours (0.05, 0.45, 0.38) (0.41, 0.67, 0.64) (0.55, 0.73, 0.69) (0.56, 0.78, 0.74) (0.43, 0.67, 0.58)
NN (0.05, 0.35, 0.37 ) (0.34, 0.62 ,0.60 ) (0.58, 0.69, 0.71) (0.55, 0.73, 0.72) (0.41, 0.59, 0.65)

Table 3.2: Results of mortality prediction for five machine learning models. The results are formatted as
(D1, D2, D1 +D2) based on the dataset they were tested on. Bold represents the highest value for each
performance metric. RF = random forest, GBC = scikit-learn gradient boosted classifier, GBC (XG) =
XGBoost gradient boosted classifier, K-Neighbours = K-neighbours classifier, NN = neural network.

Table 3.2 shows results for the two subsets D1, D2 and the whole dataset D1 +D2 using the

class balanced 90 day ’Mortality90’ label. We decided to focus on this label as the models

suffered from learning to predict the majority class when using the imbalanced ’Mortality30’

label.

In general we can see a clear increase between predictive performance when trained on D2

vs D1. The prediction accuracy for D1 is barely above that of a random guess for a binary

classification problem, which shows extremely poor performance of the models. This could

suggest that the features in subset D1 are not important in the prediction of patient outcome.

We identify that the SKlearn implementations of the random forest and gradient boosted classi-

fier models have the highest performance. Their accuracy is 76% and 75% respectively against

the full dataset, which is not particularly high for a binary classification problem, emphasising

the challenge of this task. The neural network and k-nearest neighbours classifier perform con-

sistently poorly, we hypothesised that the neural network would have the best performance so

this finding is particularly interesting. The average precision is a useful metric as it describes

the model’s ability to classify the positive class, in our case describing patient death within that

time period. The K-neighbours and NN have extremely poor average precision in comparison

to the tree based models, which for this application does not make them appropriate models.

Through our testing, it was particularly interesting that whilst all models classified examples
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perfectly on the training set, the neural network struggled more to generalise to the testing set.

In line with current literature, the gradient boosted classifier maintains the highest performance

when considering all data subsets. Gradient boosted classifiers are particularly suited to prob-

lems with tabular data, and their inherent interpretability makes them perfect candidates for

clinical use.

3.6.2 Interpretability

In this section we will analyse and compare the different global feature importance rankings

from each of the models we tested. We calculated feature importance on the whole dataset, as

the top models performance was typically the highest using D1 +D2.

Figure 3.5: Random forest feature importance.

The random forest identifies important features using highest gini importance, this is shown

above in Figure 3.5. This feature importance metric calculates the contribution of all features,

therefore the summation of all feature importances will equal 1. Admission source is identified

as the most important feature, which contains values such as ’respiratory’, ’nursing home’,

’cardiology’ etc, which could suggest many risks the patient has. For example, a patient from
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a nursing home is likely more at risk due to their age. Antibiotic name (abx_1_name) is also

identified as important, however this feature has a particularly high cardinality in comparison

to the other attributes (50 distinct values), therefore bias could be present due to the multiple

testing problem [59]. The three features between them describe >30% of the importance within

the dataset. We see frailty score and SIRS score are also identified, and share nearly equal

importance.

Figure 3.6: Gradient boosted classifier feature importance.

The feature importance from the SKlearn implementation of a gradient boosted classifier

(GBC) is shown in Figure 3.6. The GBC also uses gini importance and shares some feature

importance similarities to the random forest model. Admission source and antibiotics name

are ranked highly, however, as mentioned this could be biased due to their cardinality. The

important features are more defined here, with admission source contributing more than two

times that of the random forest model. Recent chemotherapy is also identified, which is in line

with the previously completed logistic regression analyis on this dataset from Kopczynska et

al. [23], however its contribution here is quite small.

Figure 3.7 shows the feature importance from the XGBoost implementation of a gradient

boosted classifier, using the same importance calculation as the random forest and the SKlearn

GBC. Interestingly, some features identified are extremely different. There were no features
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that described a large importance, instead all of the features contributed very small values.

Seen by CCT outreach determines whether the patient has been seen by the complex care team,

which could suggest complex/severe pre-existing health conditions. Recent chemo is identified

again with a similar importance value, and the model also identifies heart failure (HF), which

reinforces Kopczynska et al.’s findings [23]. The XGBoost classifier also identifies dysuria,

which is a key sign in a typical infection diagnosis.

Figure 3.7: XGBoost Gradient boosted classifier feature importance.

We used permutation feature importance on a K-neighbours classifier shown in Figure 3.8.

We see it heavily weighted admission source, antibiotics name and age. However, the model

performed fairly poorly in comparison to the other models we used. When features are ranked

as low importance using this method for a model with poor performance, they could be very

important for a model that performs well, therefore we should not be completely confident in

this feature importance. However, these features have been previously identified by the other

models which could suggest reliability.
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Figure 3.8: K-neighbours classifier feature importance.

Figure 3.9: Feature importance using the INVASE interpretability method for a fully connected neural
network with three hidden layers.

Figure 3.9 shows the feature importance for the neural network model using the INVASE in-

terpretability method described in Section 2.3.5.5. The value for each feature describes the
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probability that the model will select it as a feature to use for the network making the predic-

tion. We show more features than previous visualisations, as we want to show the point where

the features begin to not get selected regularly. In line with literature, and with Kopczynska et

al.’s findings using this dataset [23], the model ranks age, recent chemotherapy and ischemic

heart disease (IHD) as important. In addition there are other interesting features that other

models do not identify or rank highly, such as chronic obstructive pulmonary disease (COPD),

IHD, and cough. In contrast to some of the tree based methods, INVASE ranks antibiotics

name very low, however still retains that admission source is important, this could highlight

the bias in feature selection for the tree based models. It is important to note that the neu-

ral network does not share the same performance that the tree based models have, with lower

values across most of the evaluation metrics. During our testing, we found that each instance

shared the same feature importance, suggesting that the feature importance predictions were

also overfit, which could be due to the small size of the training/testings sets.

3.7 Discussion

In this domain, classifying a patient as surviving, when in reality they die, is more severe than

classifying a patient as dying when in reality they survive. Therefore the average precision

metric is particularly important. The SKlearn gradient boosted classifier exhibits the highest

average precision at 0.79 for D2 and D1 +D2. However this precision would not be high

enough in a clinical setting, as approximately 1 in 5 patients would be seriously misclassified.

Analysing the models performance there is a significant increase when training using subset

D2 vs using subset D1, and the performance typically improved when using the full dataset.

The performance increase suggests that D2 contains more correlated features with mortality.

The feature importances for the top performing models reinforce this, as their top features are

mostly from D2, with the exceptions of sepsis six total and frailty score. The highest accuracy

achieved was 76% for a random forest model on the whole dataset, and a gradient boosted

classifier on D2, which is not particularly high for a binary classifier as we aim for >90%

accuracy.

In contrast to the best classifier, the worst classifier on average across all evaluation metrics

was the neural network, which opposes our hypothesis that a more complex model could cap-
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ture the relationships in the dataset more effectively. It had particularly poor average precision,

which we identify as a key metric of our evaluation criteria. We believe that due to the neu-

ral network’s poor generalisation to unseen data, that the small dataset severely impacted its

performance.

During our testing we found that all models suffered from overfitting, where they classified all

examples on the training set correctly, however struggled to generalise to the testing set. This is

often due to dataset size, and our study was limited by the small cohort of patients, which was

reduced after splitting into training/testing/validation subsets. The study was also limited by

the lack of sepsis labels within the dataset - each patient had a high NEWS score and a clinical

suspicion of infection, but it is challenging to deduce which patients developed sepsis.

3.8 Conclusion

Sepsis remains a highly lethal condition, despite advances in medical technology. Early de-

tection is a major factor in reducing mortality rates, as treatment and mitigation strategies can

begin quicker. Machine learning (ML) provides a variety of methods to analyse large patient

datasets, identifying relationships between variables that may not be clear to humans.

In this document we tested a random forest (RF), two gradient boosted classifiers (GBC), a

k-neighbours classifier, and a fully connected feedforward neural network (NN) with three

hidden layers to predict patient outcome. The dataset consisted of patients all with a NEWS

score of≥ 3 and a clinical suspicion of infection. We evaluated their performance and analysed

which features each model deemed as important.

The tree based methods (RF, GBC) had the best performance over all evaluation metrics, with

the SKlearn GBC having an average precision of 0.79 and an AUC ROC of 0.82 for the full

dataset. The tree based methods identified that age, admission source, frailty score and recent

chemotherapy were important. We also implemented the INVASE interpretability method for

the neural network, while its performance was poor, it identified some different key features,

such as heart disease, and chronic obstructive pulmonary disease. Unfortunately, we were

unable to analyse individual patients, as this method converged such that all patients shared the

same feature importance, which may be due to the small size of the dataset.
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3.8.1 Future Work

We would like to explore optimising our neural network model to boost performance, as

the feature importance outputs from the INVASE method were a promising mix of clinically

known important features, and new features that could be explored. However we believe that

the small dataset size was a severe limitation, and was a factor in reducing how well the models

generalised to unseen data. The tree based methods (RF, GBC) seem best suited to our pre-

diction, and are commonly used in literature, therefore we would like to explore further inter-

pretability techniques such as shapley values. Additionally, histogram based gradient boosted

classifiers, such as lightGBM have built in support for missing values, which could be useful

in boosting performance as our dataset suffered from a fairly large quantity of missing values.
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