Corrections - Volume III

- Page v. The second line in the second paragraph should read: "Measure, Integration and Martingales".
- Page 96. The second line from the bottom should read: $f: \Omega \rightarrow \mathbb{R}$.
- Page 313. The second line in Corollary 16.25 should read: $\frac{-d z+b}{c z-a}$.
- Page 342. Equation (18.21) should read

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

- Page 380. The line below the figure should read: $\int_{\gamma} z \mathrm{~d} z=0$.
- Page 406. Problem 9 a) should read:

$$
\int_{|\zeta-z|=1} \frac{\cos \zeta^{2}}{(\zeta-\sqrt{\pi})^{3}} \mathrm{~d} \zeta ;
$$

- Page 462. The third line of Theorem 24.17 should read: ... such that on U we .
- Page 462. The beginning of the Proof of Theorem 24.17 should read:

Proof. Let $z_{0} \in D$. If z_{0} is not a singularity of f we can find a neighbourhood U of z_{0} such that $\left.f\right|_{U}$ is holomorphic. Now choose in U as g the function f and as h the constant function $h(z)=1$. In the case...

- Page 463. The third line from the bottom should read: for $k<-n$
- Page 469. Problem 2 c) should read:

$$
\frac{\cos 2 z}{\left(z-\frac{\pi}{4}\right)^{3}} \quad \text { at } \quad z_{0}=\frac{\pi}{4}
$$

- Page 640. $(* *)$ in the solution to Problem 11 should read:

$$
(* *) \quad \leq\left(\int_{[a, b]}\left(\int_{[a, b]}|k(x, y)|^{2} \mathrm{~d} x\right) \mathrm{d} y\right)^{\frac{1}{2}}\left(\int_{[a, b]}|u(y)|^{2} \mathrm{~d} y\right)^{\frac{1}{2}}
$$

- Page 698. Solution of Problem 9 a) should read:

With $f(z)=\cos z^{2}$ the Cauchy integral formula for $n=2$ reads

$$
f^{(2)}(\sqrt{\pi})=\frac{2!}{2 \pi i} \int_{|\zeta-2|=1} \frac{f(\zeta)}{(\zeta-\sqrt{\pi})^{3}} \mathrm{~d} \zeta=\frac{1}{\pi i} \int_{|\zeta-2|=1} \frac{\cos ^{2} \zeta}{(\zeta-\sqrt{\pi})^{3}} \mathrm{~d} \zeta
$$

where we used that $1<\sqrt{\pi}<2$, i.e. $\sqrt{\pi} \in B_{1}(2)$. Since $\frac{d^{2}}{\mathrm{~d} \zeta^{2}}\left(\cos \zeta^{2}\right)=$ $-2 \sin \zeta^{2}-4 \zeta^{2} \cos \zeta^{2}$ it follows that

$$
\int_{|\zeta-2|=1} \frac{\cos \zeta^{2}}{(\zeta-\sqrt{\pi})^{3}} \mathrm{~d} \zeta=\pi i\left(4 \pi^{2}\right)=4 \pi^{2} i
$$

- Page 709. The second line of the solution to Problem 2 b) should read:

$$
\begin{aligned}
& (z-4) \sin \frac{1}{z+3}=(w-7) \sin \frac{1}{w} \\
& \quad=(w-7)\left(\frac{1}{w}-\frac{1}{3!w^{3}}+\frac{1}{5!w^{5}} \pm \cdots\right)
\end{aligned}
$$

- Page 712.The solution to Problem 4 a) should read:

We have to look at the zeroes of $z \mapsto 4 \sin z-2$, i.e. we have to solve the equation $\sin z=\frac{1}{2}$. For z real we obtain the points $\frac{\pi}{4}+2 k \pi$ and $\frac{5 \pi}{4}+2 k \pi$, $k \in \mathbb{Z}$, and since $\sin ^{\prime}=\cos$ these are simple zeroes. Consequently f has at the points $\frac{\pi}{4}+2 k \pi$ and $\frac{5 \pi}{4}+2 k \pi, k \in \mathbb{Z}$, a pole of order 2 . Using the representation $\sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$ we first deduce that $\sin z=\frac{1}{2}$ cannot have a purely imaginary solution $i y$. In the general case, i.e. $z=x+i y$, we have to solve

$$
\frac{1}{2}=\sin z=\left(\frac{e^{-y}+e^{y}}{2}\right) \sin x+\left(\frac{e^{-y}-e^{y}}{2}\right) i \cos x
$$

where we used $\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$. Thus we must have $\left(\frac{e^{-y}-e^{y}}{2}\right) \cos x=0$ and $\left(e^{-y}+e^{y}\right) \sin x=1$. If $y=0$ the the first equality holds and the second becomes $\sin x=\frac{1}{2}$ and we are back in the first case discussed. If $y \neq 0$ then we must have $\cos x=0$ which implies $\sin x \in\{1,-1\}$, but for all $y \in \mathbb{R}$ we have $e^{-y}+e^{y}>1$ and the second equation cannot hold. Thus the only zeroes of $z \mapsto 4 \sin z-2$ are those determined in the first case and hence at these points f has poles or order 2 .

