Corrections - Volume II

- Page 14. The fourth line from the top should read:

$$
[0,1]=\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, 1+\frac{1}{n}\right) .
$$

- Page 19. The sixth line from the top should read:

$$
d\left(\left(a_{k}\right)_{k \in \mathbb{N}},\left(b_{k}\right)_{k \in \mathbb{N}}\right):=\sum_{k=1}^{\infty} 2^{-k}\left|a_{k}-b_{k}\right|
$$

- Page 37. The sixth line from the top should read: ... such that $d_{2}\left(f_{N}(x), f(x)\right)<\frac{\epsilon}{3}$ for all $x \in X$ if $n \geq N$.
- Page 45. The third line from the bottom should read:

$$
K \subset U_{j_{1}} \cup \ldots \cup U_{j_{N-1}} \cup U_{j_{0}}
$$

- Page 45. The second line from the bottom should read: ... Thus $\left(U_{j_{l}}\right)_{l=0, \ldots, N-1}$ is a finite subcovering ...
- Page 46. The last line should read:

$$
K \subset \bigcup_{j=1}^{m} B_{1}\left(x_{j}\right) \subset B_{r}\left(x_{1}\right)
$$

- Page 77. The fifth line from the bottom should read: ... the partial derivative of f...
- Page 78. The phrase "partial derivative" in the last but one sentence of Definition 5.4. should be in bold font.
- Page 81. The sixth line from the bottom should read:

$$
\frac{\partial^{2} g}{\partial y \partial x}(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\partial g}{\partial x}(0, h)-\frac{\partial g}{\partial x}(0,0)\right)
$$

- Page 86. The tenth line from the top should read: As before we find $\tilde{\xi}$ and $\tilde{\eta}$ such that $|\tilde{\xi}| \leq|x|,|\tilde{\eta}| \leq|y|$ and

$$
G_{x}(y)-G_{x}(0)=G_{x}^{\prime}(\tilde{\eta}) y
$$

- Page 96. The second line in the proof of theorem 6.3. should read: represented by a matrix $A \in M(m, n, \mathbb{R})$ and a \ldots
- Page 97. The fifth line from the top should read:

$$
\frac{\partial f_{j}}{\partial x_{l}}(x)=\lim _{h \rightarrow 0} \frac{f_{j}\left(x+h e_{l}\right)-f_{j}(x)}{h}=a_{j l}(x)+\lim _{h \rightarrow 0} \frac{\varphi_{X, j}\left(h e_{j}\right)}{h}=a_{j l}(x),
$$

- Page 98. The terms $a_{l j}$ from lines 11 from the bottom to 8 from the bottom should be replaced by $a_{j l}$, i.e.
We now set $a_{j l}:=\frac{\partial f_{j}(x)}{\partial x_{l}}=D_{l} f_{j}(x)$ and

$$
\varphi_{j}(\xi)=\sum_{l=1}^{n}\left(D_{l} f_{j}\left(y^{(l)}\right)-a_{j l}\right) \xi_{l}, \quad 1 \leq j \leq m
$$

Since $x \mapsto \frac{\partial f_{j}(x)}{\partial x_{l}}$ is continuous at x it follows that

$$
\lim _{\xi \rightarrow 0}\left(\left(D_{l} f_{j}\right)\left(y^{(l)}\right)-a_{j l}\right)=0, \quad 1 \leq j \leq m
$$

- Page 98. The second line from the bottom should read: $J_{S}(r, \vartheta, \varphi)=$
- Page 98. The last line should read:

$$
=\left(\begin{array}{ccc}
\sin \vartheta \cos \varphi & r \cos \vartheta \cos \varphi & -r \sin \vartheta \sin \varphi \\
\sin \vartheta \sin \varphi & r \cos \vartheta \sin \varphi & r \sin \vartheta \cos \varphi \\
\cos \vartheta & -r \sin \vartheta & 0
\end{array}\right) .
$$

- Page 99. The second line from the top should read:
$\operatorname{det} J_{S}(r, \vartheta, \varphi)=\operatorname{det}\left(\begin{array}{ccc}\sin \vartheta \cos \varphi & r \cos \vartheta \cos \varphi & -r \sin \vartheta \sin \varphi \\ \sin \vartheta \sin \varphi & r \cos \vartheta \sin \varphi & r \sin \vartheta \cos \varphi \\ \cos \vartheta & -r \sin \vartheta & 0\end{array}\right)$.
- Page 99. The third line from the bottom should read: ... are differentiable at x (or in G) then ...
- Page 101. The fourth line from the top should read: ... Since $\lim _{\eta \rightarrow 0} \frac{\psi(\eta)}{\|\eta\|}=0$ it follows that
- Page 104. Theorem 6.17 should read: Let $G \subset \mathbb{R}^{n}$ be an \ldots
- Page 175. Equation (9.37) should read:

$$
\max _{x \in \bar{G}} u(x)=\max _{x \in \partial G} u(x) .
$$

- Page 590. The third line in the solution to Problem 3. should read: i.e. $\left(a_{k}\right)_{k \in \mathbb{N}}=\left(b_{k}\right)_{k \in \mathbb{N} \ldots}$
- Page 591. The second line from the bottom should read: for all $q \geq 1$. Indeed $\left(^{*}\right)$ imples
- Page 617. The second line of the solution to Problem 5. should read:

$$
\frac{\partial}{\partial x}\left(\frac{x^{2}(y-2)^{2}}{x^{6}+(y-2)^{6}}\right)=\frac{\frac{\partial}{\partial x}\left(x^{2}(y-2)^{2}\right)\left(x^{6}+(y-2)^{6}\right)-x^{2}(y-2)^{2} \frac{\partial}{\partial x}\left(x^{6}+(y-2)^{6}\right)}{\left(x^{6}+(y-2)^{6}\right)^{2}}
$$

- Page 617. The fifth line from the bottom should read:

$$
\frac{\partial}{\partial y}\left(\frac{x^{2}(y-2)^{2}}{x^{6}+(y-2)^{6}}\right)=\frac{\frac{\partial}{\partial y}\left(x^{2}(y-2)^{2}\right)\left(x^{6}+(y-2)^{6}\right)-x^{2}(y-2)^{2} \frac{\partial}{\partial y}\left(x^{6}+(y-2)^{6}\right)}{\left(x^{6}+(y-2)^{6}\right)^{2}}
$$

