Corrections - Volume 1

- Page 8. The last but one sentence should read "Since $0 \neq 1$ it follows that there is no real number $x . . . "$
- Page 13. In the paragraph below Figure 1.1. the set should read " $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x \geq 0\}$ ".
- Page 30. Equation (2.34) should read " $(x \in X \cup Y) \Longrightarrow(x \in$ $Y \cup X)$ ".
- Page 30. Equation (2.40) should read: $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$.
- Page 44. The fourth line from the top should read " $\frac{x^{n+1}+x^{n+2}-x^{n+1}-1}{x-1}=$..."
- Page 63. The sentence 13 lines from the top should read "In Problem 10 we will show..."
- Page 66. The tenth line from the top should read "... $R=\{(k,-k) \mid k \in$ $\mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z} . . . "$
- Page 66. Definition 4.5 should read: A mapping $f: X \rightarrow Y \ldots$
- Page 71. In the first four lines only, the symbol \mapsto should be replaced by \rightarrow.
- Page 91. In Figure 6.1 the interval D should be $[A, B]$.
- Page 96. Equation (6.21) should read: $\lim _{y \rightarrow x} h_{c}(y)=c$.
- Page 97. In Part C. the equation should read: $p(x)=\sum_{j=0}^{M} a_{j} x^{j}=\ldots$
- Page 118. In Example 8.7.B. the expression should read: $\cdots g^{(3)}(x)=$
- Page 121. The last inequality should read: $a x>a y$.
- Page 124. In Problem 9 b) there should be a space before the word "Prove".
- Page 126. Thirteen lines from the bottom should read: $x_{1} \neq 0, \ldots$
- Page 147. The second line from the bottom should read:

$$
\ldots \arcsin :[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ldots
$$

- Page 193. Two lines above equation (13.18) should read: $p_{j}, q_{l} \in \mathbb{N}_{0}$.
- Page 207. The sixth line from the top should read:

$$
=\left(\sum_{j=1}^{n} a_{j}^{2}\right)\left(\sum_{j=1}^{n} b_{j}^{2}\right)
$$

- Page 207. The final line in the proof should read:

$$
\sum_{j=1}^{n}\left|a_{j} b_{j}\right| \leq\left(\sum_{j=1}^{n} a_{j}^{2}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n} b_{j}^{2}\right)^{\frac{1}{2}}
$$

- Page 231. Problem 4. b) should read: $\sum_{n=0}^{\infty} e^{-n x}, x>0$;
- Page 234. The fifth line from the top should read: there exists $N \in \mathbb{N}$, $N \geq k$, such that...
- Page 236. In Definition 17.8.A. the expression $a_{n_{l}} \neq a$ should be removed.
- Page 237. The third sentence of the proof of Lemma 17.10. should read: Since $\left(a_{k}\right)$ is a ...
- Page 243. The second sentence of Theorem 18.1 should read: The series $\sum_{n=k}^{\infty} a_{n}$ converges ...
- Page 243. Equation (18.1) should read: $\left|\sum_{l=m}^{n} a_{l}\right|<\varepsilon$.
- Page 245. The last line should read: $s_{1} \leq s_{3} \leq s_{5} \leq \cdots \leq s_{2 k+3} \leq$
- Page 247. In Remark 18.12. the phrase "conditionally convergent" should appear in bold font.
- Page 251. In Example 18.22.A. the series $\sum_{n=1}^{\infty} \frac{1}{n(\ln (n))^{2}}$ in the third line should be: $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$
- Page 254. The sixth line from the top should read: Let $r \in \mathbb{R}, r>0$, be of the form...
- Page 261. The fourth line from the top should read:

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|a_{k}+b_{k}\right|}{1+\left|a_{k}+b_{k}\right|} \leq \cdots
$$

- Page 267. Equation (19.12) should read:

$$
y=\operatorname{sgn}(x) \sum_{l=-k}^{N} a_{l} 2^{-l}, \quad a_{l} \in\{0,1\}
$$

- Page 269. The ninth line from the top should read: ... assume that $x_{0}, \ldots, x_{n} \in D$ and...
- Page 271. Equation (19.19) should read:

$$
\liminf _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=a .
$$

- Page 273. Theorem 19.27 should read: Every non-empty open set $A \subset \mathbb{R} \ldots$
- Page 277. The twelfth line from the bottom should read: ... such that $0<|y-x|<\delta$ implies $|f(y)-a|<\varepsilon$.
- Page 279. Definition 20.5.A. should state: limit from the right at x and Definition 20.5.B should state limit from the left at x.
- Page 279. The line below equation (20.2) should read: In the case where $x \in D$ and $a=f(x) \ldots$
- Page 280. The first line in Example 20.8.B should read: Let $P(x)=$ $x^{k}+a_{1} x^{k-1}+\ldots+a_{k-1} x+a_{k} \ldots$
- Page 286. The third line from the top should read: ... there is exactly one point $x_{0} \ldots$
- Page 288. The fifth line from the top should read: these intervals, say $J\left(x_{1}\right), \ldots, J\left(x_{N}\right)$. On...
- Page 299. The first line of Example 21.10 should read: For $\alpha \in \mathbb{R}$ consider $f:(0, \infty) \rightarrow \mathbb{R}, x \mapsto x^{\alpha}$.
- Page 305. Equation (22.2) should read:

$$
f_{+}^{\prime}(x)=\lim _{\substack{y \rightarrow x \\ y>x}} \frac{f(y)-f(x)}{y-x} \leq 0
$$

and equation (22.3)

$$
f_{-}^{\prime}(x)=\lim _{\substack{y \rightarrow x \\ y<x}} \frac{f(y)-f(x)}{y-x} \geq 0
$$

- Page 308. The third line from the bottom should read: ... Now $\frac{f(x)}{g(x)}=x \sin \left(\frac{1}{x}\right) \rightarrow 0$ as \ldots
- Page 327. The last line of Exercise 23.22 should read: ... converges in \mathbb{R} to $x^{(\nu)}$.
- Page 328. The first line of Problem 6 should read: ... assume in addition that h is ...
- Page 333. In the second and third lines from the bottom $\|f\|_{K, \infty}$ should be replaced by $\|f\|_{\infty, K}$.
- Page 334. Every norm $\|\cdot\|_{K, \infty}$ in lines 2-6 from the top should read as: $\|\cdot\|_{\infty, K}$.
- Page 335. The second line from the top should read:

$$
\left|f_{N}(x)-f_{N}\left(x^{\prime}\right)\right|<\frac{\varepsilon}{3} \text { for all } x^{\prime} \in I,\left|x-x^{\prime}\right|<\delta
$$

- Page 336. The second line from the top should read: such that $\| f-$ $f_{n} \|_{\infty} \leq 1$ for \ldots
- Page 335. The third line in Definition 25.2 should read: $\left.\varphi\right|_{\left(x_{k-1}, x_{k}\right)}$, is constant, $k=1, \ldots, n$, i.e. $\varphi(x)=c_{k}$ for \ldots
- Page 345. The fifth line from the bottom should read: $\left.\varphi\right|_{\left(x_{k-1}, x_{k}\right)}$, is constant, $k=1, \ldots, n$, i.e. $\varphi(x)=c_{k}$ for all \ldots
- Page 346. The fourth line in the proof of Lemma 25.4 should read: ... For $1 \leq l \leq k$
- Page 347. Equation (25.5) should read: $\varphi(x) \leq f(x) \leq \psi(x)$ for all $x \in$ $[a, b]$.
- Page 347. Equation (25.6) should read: $\psi(x)-\varphi(x) \leq|\psi(x)-\varphi(x)| \leq$ ϵ for all $x \in[a, b]$.
- Page 354. The second line from the top should read: ... there exist step functions ...
- Page 354. The second line in the proof of Theorem 25.17 should read: ... By $x_{k}:=a+k \frac{(b-a)}{n}, \ldots$
- Page 363. The tenth line from the bottom should read: trivial fact that if $\varphi \in T[a, b]$ and \ldots
- Page 363. The third line from the bottom should read: ... the functions $\left.f\right|_{[a, c]}$ and $\left.f\right|_{[c, d]}$ are integrable and ...
- Page 376. Equation (26.18) should read:

$$
\left|\frac{e^{-a t}-1+a t}{t}\right| \leq \frac{1}{2} a^{2} t .
$$

- Page 376. The fourth line from the bottom should read:

$$
0 \leq \int_{0}^{a t}\left(1-e^{-x}\right) \mathrm{d} x=a t+e^{-a t}-1
$$

- Page 376. The second line from the bottom should read:

$$
\left|e^{-a t}-1+a t\right|=\int_{0}^{a t}\left(1-e^{-x}\right) \mathrm{d} x \leq \int_{0}^{a t} x \mathrm{~d} x=\frac{(a t)^{2}}{2}
$$

- Page 378. The eighth line from the bottom should read: \qquad we know that $\int_{a}^{x} f_{n}^{\prime}(t) \mathrm{d} t \rightarrow \int_{a}^{x} f^{*}(t) \mathrm{d} t, \ldots$
- Page 395. Definition 28.1 should read: ... interval with endpoints ...
- Page 396. Example 28.3 should read: ... continuous function $f_{\alpha}:(0, R] \rightarrow \mathbb{R}, x \mapsto \frac{1}{x^{\alpha}} \ldots$
- Page 399. Equation (28.12) should read:

$$
\int_{a}^{\alpha} f(x) \mathrm{d} x:=\lim _{c \rightarrow a} \int_{c}^{\alpha} f(x) \mathrm{d} x
$$

- Page 405. The fourth line from the bottom should read:

$$
=\lim _{\epsilon \rightarrow 0} \lim _{R \rightarrow \infty}\left(-\left.t^{x} e^{-t}\right|_{\epsilon} ^{R}\right)+x \lim _{\epsilon \rightarrow 0} \lim _{R \rightarrow \infty} \int_{\epsilon}^{R} t^{x-1} e^{-t} \mathrm{~d} t
$$

- Page 412. In Definition 29.3, both $\left(c_{n}\right)_{n \in \mathbb{N}}$ terms should read as $\left(c_{n}\right)_{n \in \mathbb{N}_{0}}$
- Page 417. Equation (29.12) should read:
$f(x)=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{f, c}^{(n+1)}(x)$
- Page 418. Definition 29.12 should read: ... of f around $c \in(a, b)$...
- Page 418. Equation (29.14) should read:

$$
T_{f, c}^{(k)}(x):=\sum_{j=0}^{k} \frac{f^{(j)}(c)}{j!}(x-c)^{j}, k=1, \ldots, n .
$$

- Page 419. Equation 29.22) should read:

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

- Page 419. The final equation in the proof of Theorem 29.14 should read:

$$
=f^{(n+1)}(\xi) \int_{x_{0}}^{x} \frac{(x-t)^{n}}{n!} d t=f^{(n+1)}(\xi) \frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!}
$$

- Page 420. The terms $T_{f}(x)$ in Example 29.18 should be replaced by $T_{f, 0}(x)$.
- Page 425. Problem 7 should read: For $l \in \mathbb{N}_{0} \ldots$
- Page 430. The eleventh line from the bottom should read:

$$
\left|\prod_{k=N}^{n} c_{k}-\prod_{k=N}^{m} c_{k}\right|<\left|\prod_{k=N}^{m} c_{k}\right| \cdot \frac{2}{3} \epsilon<\epsilon
$$

- Page 453. Three lines above equation (31.37) should read: Thus we can extend Γ to $\mathbb{R} \backslash\left(-\mathbb{N}_{0}\right), \ldots$
- Page 463. Theorem 32.4 should read: The Cantor set is a compact, non-denumerable null set.
- Page 481. The first part of equation (A.II.10) should read: $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$.
- Page 484. In equation (A.II.44) the A_{j} term should be A_{i}.
- Page 545. The third line from the bottom should read: $k p \geq 2 k \geq$ $k+1$.
- Page 594. The third line from the top should read:

$$
=\frac{1}{a} \lim _{y \rightarrow \infty} \frac{y}{\exp (y)}=0 .
$$

- Page 594. The tenth line from the top should read:

$$
\ldots \lim _{x \rightarrow \infty}\left(\frac{x}{\exp \left(\frac{a x}{n}\right)}\right)=0 .
$$

- Page 637. The third line from the top should read: ... and for $x>0$ we know ...
- Page 666. The second line from the top should read: ... On ($x_{j}-$ $\left.\delta_{x_{j}}, x_{j}+\delta_{x_{j}}\right) \ldots$

