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Abstract
3D urban scene reconstruction is a difficult problem in computer graphics, mainly due
to unavoidable noise in real scene datasets and scalability. Whilst the state-of-the-art is
able to produce reconstructions of various qualities, very few reconstruction approaches
incorporate noise and clutter treatment strategies. Funded by Ordnance Survey, in this
dissertation, we identify key areas of potential innovation in order to achieve large-scale
and denoised 3D models of cities. To determine these areas of innovation, qualitative
data from stakeholder engagement activities have been used to guide a literature survey
on recent techniques in 3D reconstruction.

The KJ method, also known as Affinity Diagrams, has been employed to organise and
visualise the qualitative data collected. The steps of the method were closely followed where
appropriate, and the process of arriving at the finalised diagram is shown. The literature
surveyed is then mapped on the Affinity Diagram to identify the strengths and gaps of
the literature with respect to our stakeholder’s requirements and workflow practices.

Following this approach, the main goal of our stakeholder has been defined as a multi-
class reconstruction of urban scenes. Along with the 3D reconstructions themselves, two
more areas for future investigation are identified, which combined promise to achieve our
stakeholder’s goal. The first area identified is semantic capabilities, which are capabilities
referring to the ability to understand different objects and shapes within the scene. The
second area identified is human-centric quality assurance, where the hypothesis is that the
incorporation of people within the pipeline to be developed will greatly aid in achieving
scalable multi-class reconstructions of that scale.
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Chapter 1

Introduction

In 1971, Ordnance Survey was established as the national mapping agency of Great
Britain [1]. Through the use of the Ramsden theodolite, they created accurate triangulation
networks, which allowed for the creation of the first maps of that accuracy. Whilst they
initially paved the way for modern map making, since then, the geospatial Industry has
evolved, and it is now a need more than ever to incorporate a third dimension in their maps.

Today, data-gathering techniques have greatly evolved. By utilising satellites and
aerial vehicles, ultra-accurate images of any landscape are available. These images can be
directly converted into 3D through photogrammetry techniques, which convert images
into 3D points. These points are called point clouds and are one of the dominant data
types for 3D representations. Other point cloud generation techniques include using
aerial and land-based LiDAR sensors, which, in essence, send electromagnetic waves in
a direction and measure the time it takes for the wave to be reflected.

Using point clouds to generate more intuitive 3D meshes has always seen limitations
in the unavoidable noise that comes with them. City-scale 3D reconstructions can be
a foundation for many Industries, smart cities, digital twins, autonomous vehicles and
assessment and management of infrastructure.

Reconstruction of 3D buildings through sensor points is a difficult problem in computer
graphics [2]. The optimisation-based Polyfit method has presented a fast technique which
provides 3D reconstructions whilst preserving structural details. Improving on their
approach, the more recent City3D [3] can achieve building reconstructions on a very large
scale, using aerial LiDAR data as input. However, as seen in Figure 1.1 the output shapes
do not comprise building and architectural details, geographical details or environment.
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1. Introduction

On the other hand, deep learning approaches have shown to be very promising in covering
these limitations as of late. For example, as seen in Figure 1.2, neural representations,
such as NKSR [4], can provide much more detailed 3D reconstructions and do not limit
themselves to buildings. However, it is demonstrated through this dissertation that
these approaches mostly lack any capabilities of augmenting and interacting with the
reconstructed scene. Techniques incorporating such capabilities are shown to have other
limitations, such as being able only to infer a single object.

Figure 1.1: City3D Reconstruction, taken from [3]

Funded by Ordnance Survey, the aim of this dissertation is to identify key areas
of potential innovation, which, as an end result, can provide 3D reconstructions of
urban landscapes. As the essence of our centre, we employ human-centred approaches
for the identification of said areas of potential innovation. The main findings of the
human-centred approaches are used to guide the analysis of a technical survey in the
state-of-the-art of 3D reconstruction.

The KJ method [5], also known as affinity diagramming, was employed to analyse
qualitative data collected through interactions with our stakeholder. The themes uncovered
from the Affinity Diagram relate to our stakeholder’s technical requirements, the data
modalities available, industrial standards and human-in-the-loop. These themes are used
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Figure 1.2: NKSR Reconstruction, taken from [4]

to guide our survey and assess the latest approaches in 3D reconstruction. Combining
the insights for the Affinity Diagram and our literature survey, we identify key areas
of potential innovation.

Following this introduction, Chapter 2 provides the necessary background, Chapter 3
provides the technical survey on 3D reconstruction. In Chapter 4, the methods undertaken
to produce this dissertation are shown. In Chapter 5, our main findings are demonstrated.
In Chapter 6, we discuss our main findings and in Chapter 7, we explain our limitations and
future research that will be built from this project. Conclusions are shown in Chapter 8.
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Chapter 2

Background

In this Chapter, some context is provided regarding the topics of this dissertation. In
Section 2.1, some knowledge of 3D Vision is provided. In Section 2.1.2, some fundamentals
on Human-centred methods and Affinity Diagrams are shown. In Section 2.3, fundamental
neural approaches are presented.

2.1 3D City Vision

In this section, some context on 3D Vision techniques is provided. 3D Vision is categorised
into 3D reconstruction, classification and segmentation. 3D reconstruction is concerned
with capturing the shape from a sensor modality and returning it as a 3D model. Whereas
classification and segmentation are semantic tasks which are concerned with understanding
individual shapes and objects in the sensor data. In Section 2.1.1, some information on 3D
reconstruction is shown and in Section 2.1.2, some preliminaries on semantic tasks.

2.1.1 3D Reconstruction

Reconstruction techniques in 3D spaces can be categorised as explicit or implicit [6].
Explicit surfaces are defined by quantifiable geometrical parameters and can be parametric
or triangulated. Parametric surfaces refer to surfaces where primitives are deformed to fit
the shape points, whereas triangulated surfaces are formed by connecting input points into
triangles. Implicit surfaces solely rely on functions whose isosurface approximates the input
data and require post-processing techniques for visualisation, such as marching cubes.
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2. Background

3D reconstruction has been a monumental topic of interest in the area of computer
graphics and can trace its steps back to over fifty years ago [7]. William E. Lorensen
revolutionised the field with the marching cubes, a method which allows for wrapping
explicit surfaces over implicit functions [8]. This technique overcame the main limitation
of 3D surfacing at the time, prohibiting computational complexity. Owing to its efficiency
and wide applicability, it is widely used today. Since then, techniques of 3D computer
vision have been a very popular field of research owing to its many applications, such
as simulation and autonomous path navigation.

Only a small portion of the literature actively contributes to achieving 3D maps. As
already shown, [3] and [4] utilise aerial and land-based LiDAR data, respectively, to achieve
their reconstructions. Other approaches [9–11] identify building geometries, some able to
even achieve large-scale reconstructions as seen in Figure 2.1. Others are able to provide
both small-scale detailed and large-scale but very rough reconstructions [12], as seen
in Figure 2.2. As will be demonstrated in Chapter 3, the majority of the state-of-the-art
incorporates deep learning approaches to achieve their reconstructions and does not
focus on urban landscapes-related reconstructions.

Figure 2.1: MTBR-Net large-scale 3D reconstruction, taken from [11]
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2.1. 3D City Vision

Figure 2.2: Out-of-core reconstruction method, small-scale scene (left), large-scale scene (right),
taken from [12]

3D reconstruction is a leading topic in terms of digital products, with the largest
technology companies in the world leading it. Where Google Earth Engine utilises AI
to analyse enormous datasets from satellite imagery, enabling planet-scale analysis [13].
Microsoft Building Footprints utilises AI to identify map features at scale and has released
millions of building footprints as part of their humanitarian efforts [14]. QGIS, an
open-source GIS which provides viewing, editing, printing and analysis of geospatial
data [15]. ArcGIS has similar functionalities [16]. However, it allows a great deal of
data interactivity, which unlocks new horizons for analysis. FugroViewer allows for
the visualisation and interpretation of geospatial data in addition to providing terrain
models, as seen in Figure . However, FugroViewer outputs subpar 3D reconstructions
due to reliance on Triangulation Irregular Networks (TIN). TerraXplorer Pro, developed
by Skyline software, in addition to capabilities for quality reconstructions, utilises AI
to perform semantic tasks, such as segmentation.

Figure 2.3: FugroViewer Reconstruction of terrain (Bear Earth) model (left) and TIN (right),
provided by Ordnance Survey.
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2. Background

2.1.2 Semantic Understanding

Semantic tasks can be categorised as either classification or segmentation [17,18]. Classific-
ation is the process of identifying what the data represents and assigning an appropriate
label. Segmentation, on the other hand, takes this concept a step further, breaking down the
input data into segments and assigning labels to individual components. For point cloud
data, classification assigns class labels to specific points based on different global criteria,
whereas segmentation predicts point labels based on point-level characteristics [17,18].

In Geographic Information Systems (GIS), semantic information can greatly enrich
the data by providing context to the captured geographical coordinates [19]. Such data
enrichment can include building installations, door entries and exits of buildings, land use
and land cover, to name a few [19]. However, GIS datasets oftentimes include high amounts
of noise and clutter, where semantic information can be used to treat appropriately. Said
noise and clutter need to be identified and treated carefully, as some industries use
information that is meaningless for other industries. To paraphrase from the original
quote, one industry’s noise is another industry’s signal.

It is seen that generalised semantic capabilities, whilst a very active area of research, are
vastly different from 3D reconstruction. Approaches focusing on reconstruction are seen
to incorporate geometric parameters of buildings to identify them from their edges [9, 10],
whereas others utilise building-specific semantics [11]. It is shown through this dissertation
that, in general, semantic capabilities in 3D reconstruction approaches are limited.

2.2 Human-centred Software Design

2.2.1 Human-Centred Software Design in Industrial Contexts

Over the years, the significance of incorporating User Centred Design (UCD) approaches
in industrial contexts has been repeatedly demonstrated. Early work on Human-computer
Interaction (HCI) incorporation in Industry has identified that larger organisations mostly
employed such approaches at very low scales [20]. Furthermore, it was identified that
the interaction of usability studies was avoided due to the perception of being too time-
consuming, expensive relative to reward, limited in diversity and applicability, and very
complex [20,21]. According to HCI professionals, resource constraints and resistance to
user-centred approaches were the major prohibiting factors in employing UCD [20].
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Central to enabling these techniques is the role of qualitative data collection. Qualitative
data are non-numeric data which are obtained through open-ended and conversational
communications aiming to provide an understanding of the underlying reasons, opinions
and motivations [22]. Common qualitative data-gathering techniques employed by HCI
practitioners include interviews [23], focus groups [23,24], surveys [20] and prototyping [22].
Analysis of qualitative data involves grouping the interviewed population into themes
and interpreting data based on the themes developed, [20, 22, 24]. Another key aspect of
thematic analysis is specific participant responses, which can benefit the researcher when
attempting to contextualise the themes generated and draw more meaningful insights.

In industrial contexts, geographical data introduce additional complexities. Many
industrial applications involve working with geographical information, and the interaction
and visualisation systems surrounding these types of data can vary greatly depending on
data sources, system purposes and interfaces [25]. Dealing with complex data is a challenge
in general for such applications. Different individual users with diverse tasks will often
use the system in unique and unpredicted ways, which can vary greatly depending on
data sources, system purposes and interfaces [26]. Previous research has demonstrated
that individual user’s experience with geographic information data is a significant factor in
determining potential usability issues with the software being developed. This is exactly
what we aim to do through this dissertation, which will show how experts from the field
guide our Affinity Diagram and, thus, the survey analysis.

2.2.2 Affinity Diagrams

The KJ method, more commonly known today as Affinity diagramming, is an organisational
method developed by anthropologist Jiro Kawakita [5]. It can be used as a quality control
method that is focused on allowing creativity when analysing unstructured qualitative
data [27]. This is achieved by undertaking a bottom-up approach in data grouping, which
eliminates preconceived notions and biases of the researchers [5]. Affinity diagramming
has been previously used in a diverse set of applications, including user experience
design [28], interactive prototype evaluation [29], and logistics optimisation [30], to name
a few. In addition, an interest in digitalising affinity diagramming is evident in recent
literature [27, 28], allowing for optimisation of the affinity diagramming process and
greatly aiding the researcher when dealing with large sets of quantitative data.
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2. Background

These are the four key steps to be followed when creating an affinity diagram,
according to [5]:

1. Label making

2. Label grouping

3. Chart making

4. Written or verbal explanation

The first step undertaken in producing an Affinity Diagram is label making. In this
step, qualitative information is transcribed into labels, each representing a single thought
or statement. During the second step, said labels are shuffled and grouped based on
label statement affinity, i.e., natural relationships between labels. This is an iterative
process, where the groups formed over several iterations indicate broader categorisation.
The different iterations in this step include carefully reading the labels and performing
label and grouping adjustments to minimise group number. This is a crucial step in
Affinity Diagramming, as the non-linear method of label grouping is what constitutes
the nonlinear nature of this diagram. The third step in creating an Affinity Diagram is
chart-making, where the groups formed are placed on a unifying chart. This chart attempts
to join groups into larger thematic concepts where relevant and show causal and effect
relationships between groups or individual labels. This is a decisive step for revealing
inter-relationships and patterns between groups and optimising spatial arrangements
to correctly identify the thematic concepts. Finally, a written or verbal explanation of
the chart must be supplied to provide the reader with an understanding of the data and
enforce the core ideas and patterns evident from the diagram.

2.3 Fundamental Neural Architectures and Representations

This section briefly describes the preliminary information required to follow the rest
of the dissertation. The literature surveyed is diverse in that techniques can comprise
many modules, each addressing a different function of the overall architecture. This
section describes the preliminaries required to follow the rest of the dissertation. These
preliminaries include basic and advanced model architectures and neural representations.
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2.3.1 Multilayered-Perceptrons (MLP)

MLPs are a simple architecture of neural networks comprised of simple interconnected
neurons [31]. They receive and output data in the form of vectors. Data are propagated
forward as weights in their hidden layers, which can be one or many. The inputs
in each hidden layer are the outputs of the previous one, and new weight sums are
computed in the corresponding neurons of the layer. Through an activation function,
nonlinearity is achieved.

Figure 2.4: A multilayer perceptron with two hidden layers, taken from [31]

2.3.2 Convolutional Neural Networks (CNN)

L. Atlas et al. [32] carried out the first implementation of CNNs to learn dynamic patterns.
CNNs differentiate themselves from traditional neural networks in that they employ
convolutional layers, which in turn use a filter that computes different feature maps.
Many different architectures arise from CNNs. A very popular approach is the U-Net
architecture [33]. First applied to biomedical image segmentation, its name is derived
from its architecture, which resembles a U-shape, where a contractive fully convolutional
network is followed by an expanding one, as seen in Figure 2.5. The contractive and
expanding networks are called the downsampling and upsampling stages, respectively.
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High-resolution features from the contracting stage are used within the upsampling
stage to assemble a more precise output.

Figure 2.5: U-Net architecture: Each individual blue box corresponds to a multi-channel feature
map. The channel number is denoted on top of the box. The white boxes represent copied feature
maps. The arrows denote different operations. Taken from [33]

2.3.3 Vision Transformers (ViT)

Vaswani et al., proposed the Transformer models, completely relying upon attention
mechanisms to map relationships between inputs and outputs in natural language
processing applications [34]. They utilise a fully connected network seen in Figure 2.6,
where both encoder and decoder utilise self-attention mechanisms. Research from Google
extended this technique into vision applications with the Vision Transformer (ViT) [35].
They overcome the reliance of convolutional networks for image processing by directly
applying the transformer architecture on sequences of image patches.
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Figure 2.6: Transformer architecture taken from [34]

2.3.4 Variational Autoencoders (VAE) and Vector Quantised - Variational
Autoencoders (VQ-VAE)

Kingma and Welling introduced the Variational Autoencoder (VAE) [36], which utilises
neural networks. As an initial stage, it maps the input data into a latent space, the encoder
stage. It is followed by a decoder, which maps the data from the latent space to the desired
output. Van den Oord et al., by learning the latent space with a technique inspired by vector
quantisation to develop the Vector Quantised-Variational Auto Encoder (VQ-VAE) [37].
Their VAE architecture includes two shallow CNNs as encoder-decoder.

2.3.5 Diffusion-Denoise Models (DDM)

DDMs, inspired by non-equilibrium thermodynamics and stochastic differential equations,
are models that incrementally add noise to a data sample, the diffusion process [38,39].
They become generative models by undertaking the reverse diffusion process, which
inverts diffusion [38].
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2.3.6 Neural Radiance Field (NeRF)

The NeRF framework, introduced by Mildenhall et al., utilises a deep, fully connected MLP
without any convolutional layers to render the scene as a volume density with directional
emitted radiance at any point in space [40]. The volume rendering is represented by a 5D
vector, with a Cartesian coordinate in the 3D space and radiance emitted in each direction.
An overview of the NeRF method is seen in Figure 2.7

Figure 2.7: Overview of the neural radiance field scene representation and differentiable rendering
procedure: Images are synthesised by sampling 5D coordinates along camera rays (a), feeding
those locations into an MLP to produce colour and volume density (b), and using volume rendering
techniques to composite these values into an image (c). This rendering function is differentiable, so
the scene representation can be optimised by minimising the residual between the synthesised and
ground truth observed images (d), taken from [40]

2.3.7 Neural Implicit Surfaces: NeuS

The NeuS framework, presented by Wang et al. [41], introduces a neural surface reconstruc-
tion method that integrates volume rendering techniques for multi-view reconstruction.
The framework is explicitly inspired by NeRF, which represents a scene as a volume
density with emitted radiance. Unlike NeRF, NeuS aims to learn a neural implicit surface
and is optimized for high-fidelity reconstructions.

2.3.8 Neural Kernel Fields (NKF)

The authors of NKF [42] utilise a kernel with learnable parameters which solve simple
positive linear systems and predict an implicit function. This approach directly receives
points with surface normal sampled from the set of input points. They utilise the Neural
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Spline kernel function to define the data-dependent kernel. Coefficients learned by the
kernel function are used to predict new functions for new points.

2.3.9 Backbones

Backbone networks are deep, pre-trained models used for feature extraction, usually at
the beginning of a pipeline [43]. Whilst they can be of many architectures, convolutional
backbones are the most popular. The Residual neural network (ResNet) is a fully
convolutional neural network created for image recognition [44]. The convolutional layers
were proposed to alleviate the vanishing gradients during the backpropagation algorithm,
which was very common with deep neural networks. On the other hand, PointNet is
heavily inspired by CNNs in that it uses weight sharing and maximum pooling whilst
not incorporating any convolutional layers [18]. Instead, it uses an MLP shared for all
points after an initial spatial transformation network, which attempts to canonicalise the
data before processing. PointNet is used for classification and point-level segmentation,
where its architecture is seen in Figure 2.8.

Figure 2.8: PointNet architecture, taken from [18]
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Chapter 3

Literature Survey

We present a survey with key elements of analysis being 3D reconstruction techniques
along with modelling approaches and architectures. Such reconstruction techniques
include both explicit and implicit representations. It is shown that individual modules in
the approaches discussed contribute to the resulting reconstructions in different ways,
whether used for learning or modelling. Moreover, data input modalities, semantic scene
understanding capabilities and human incorporation of the literature are analysed.

The focus of the survey is extended beyond urban-specific reconstructions such that
a much better understanding of the state-of-the-art is gained. The analysis themes are
guided by our Affinity Diagram, shown in Chapter 5. Following the literature analysis
with respect to our themes, a critical analysis is presented. Section 3.1 examines the
modeling approaches undertaken by 3D reconstruction techniques. Section 3.2 relate
to the data input modalities. Section 3.3 demonstrates the reconstruction modalities of
the approaches, i.e., the data outputs. Section 3.4 shows approaches incorporating scene
and semantic capabilities. Section 3.5 techniques with human-in-the-loop elements and
finally Section 3.6 summarises the insights from this survey.

3.1 Modelling Approaches

Modelling approaches for 3D reconstruction are often seen to be comprised of multiple
models and architectures. In Section 2.3, we have shown the fundamental models,
representations and architectures that mostly comprise the literature analysed. In Table 3.1,
a summary of the modelling approaches used by the literature is visible. Section 3.1.1
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focuses on approaches that employ MLP modules. Section 3.1.2, discusses approaches
that incorporate convolutional modules. Section 3.1.3 covers approaches that utilise
transformer modules. Section 3.1.4 examines VAE and VQ-VAE architectures. Section 3.1.5
explores techniques that employ diffusion models, and finally, Section 3.1.6 delves into
optimisation based techniques.

3.1.1 Multi-Layered Perceptrons (MLPs)

MLPs are seen to be the primary technique for producing neural representations. Directly
building upon NeRF, [57] utilises an MLP decoder for density field prediction. Authors
of [67] chose to save the density and colour modalities of NeRF into explicit voxels. They
can directly render volumes, and with a shallow MLP, they can predict colour emission.
The authors of RealFusion [58] utilise Instant-NGP to increase their NeRF rendering speed.

On the other hand, [51, 59, 60, 62], Improve upon NeuS, leveraging the cheaper SDF
representations [41]. Neuralangelo authors [51] focus on allowing surface normals
computation everywhere, improving detail refinement. PermutoSDF [59] utilises MLPs for
SDF and colour computations and follows NeuS for approximating their SDFs. NeuDA [60]
improves the approximated SDFs by initialising NeuS with a voxel grid comprising 3D
positions called "anchors", which are hierarchically concatenated. ShadowNeus utilises the
same strategy as NeuS and, thus, an MLP for producing their representations. However,
they utilise their proposed "shadow rays", which are more physically correct, based on
the assumption that a scene does not emit any light.

MLPs are seen as a default solution for data processing. They are used as decoders
by [47, 48, 50, 52]. For [50] and [48], they are used for decoding the attention features.
ShapeClipper [47], on the other hand, utilises two MLPs to directly predict SDFs and
RGB values. In their pipeline, authors of ALTO [52] utilise PointNet to extract features
from point clouds and MLPs to decode attention features. ManhattanSDF [64] through a
single MLP can predict SDFs, colour fields and semantic logits, improving reconstruction
accuracy by enforcing the Manhattan-world assumption [75]. Authors of [39] utilise
MLPs for their noisy point cloud processing.

Some approaches are seen to be entirely comprised of MLPs, such as [65, 66, 72].
TARS [65] utilises DeformNet as an MLP backbone to compute spatial mappings and
point features. The mappings and features are then fed to another MLP to compute neural
representations of the reconstructed shape. The authors of [66] incorporate an MLP query
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Table 3.1: Modelling Approaches used by the literature

Author Papers Models and Architectures
DDM VAE VQ-VAE Transformer MLP CNN Optimisation

LION [38] × × - - - × -
AutoSDF [45] - - × × - × -
SDFusion [46] × - × - - - -
ShapeClipper [47] - - - × × × -
SRDF [48] - - - - × - -
OG-INR [49] - - - - × - -
VolRecon [50] - - - × × - -
Neuralangelo [51] - - - - × - -
ALTO [52] - - - - × - -
BUOL [53] - - - - - × -
AutoRecon [54] - - - × - - -
Part Retrieval and As-
sembly [55]

- × - - - - -

SparseFusion [56] × - - × × × -
Behind the Scenes [57] - - - - × × -
PC2 [39] × - - - × × -
RealFusion [58] × - - - × - -
PermutoSDF [59] - - - - × - -
NeuDA [60] - - - - × - -
SECAD-Net [61] - - - - - × -
ShadowNeuS [62] - - - - × - -
NKSR [4] - - - - - × -
City3D [3] - - - - - - ×
POCO [63] - - - - - × -
HEAT [9] - - - × - × -
ManhattanSDF [64] - - - - × × -
TARS [65] - - - - × - -
Predictable Context
Prior [66]

- - - - × - -

Direct Voxel Grid Op-
timisation [67]

- - - - × - -

Out-of-Core [12] - - - - - - ×
Vis2Mesh [68] - - - - - × -
PSR [69] - - - - - × -
GaussianFussion [70] - - - - - - ×
Search and Evaluate
[10]

- - - - - × -

RetrievalFuse [71] - - - - - × -
Learning SDF for Mul-
tiview Surface Recon-
struction [72]

- - - - × - -

VolT [73] - - - × - - -
3DIAS [74] - - - - × × -
MTBR-Net [11] - - - - - × -
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network that globalises local features learned from PointNet and an SDF network that
produces an implicit scene representation. Authors of [72] provide a self-supervised
approach where two different MLPs are utilised, one for SDF computing and a second
one with learnable parameters for computing the light field. Said learnable parameters
are utilised to overcome the non-differentiable nature of the light rays and allow for the
intersection point computation of the rays and the field.

3.1.2 Convolutional Neural Networks (CNNs)

Convolutional encoders are the most popular applications of CNNs, followed by backbones.
ResNet is used as a convolutional encoder for [45,47,53,56,57,69]. For AutoSDF [45], this is
one of two domain-specific encoders, which are followed by encoders for up-convolutions
to 3D. ShapeClipper [47] and SparseFusion [56] find the only convolutional element of their
approach in their encoder. In [69], a siamese ResNet encoder is used for plane detection
and camera pose estimation modules. In addition, PlanRCNN is used for plan detection,
producing features from the ResNet backbone [76]. Authors of BUOL [53] utilise a ResNet
encoder and a Deeplab backbone as a three-branch decoder. The decoder is able to predict
semantic maps, multi-plane occupancies and a depth map. In addition to their point cloud
processing, the authors of PC2 [39] also process voxels using a Un-Net. A U-Net feature
extractor is also used by RetrievalFuse [71]; however, it is used for point cloud processing
instead. Authors of NKSR [4] utilise a U-Net encoder and decoder to obtain sparse voxel
grids from extracted point features and to reverse the encoding process.

Authors of [9, 11, 63] rely on other convolutional backbones. Authors of POCO [63]
utilise the FKAConv backbone to perform point convolutions and compute vectors in the
latent space, where they identify that the convolutional backbone is more efficient than
PointNet.Authors of HEAT [9] utilise a ResNet backbone of feature extraction in their
architecture, whereas the authors of MTBR-Net [11] find a convolutional backbone in
the high-resolution network HR-Net which unlocks their diverse semantic capabilities.
Authors of VolT [73] use a pre-trained CNN to generate initial 2D-view embeddings.

Other approaches are fully convolutional [10, 61, 68]. SECAD-Net [61] utilises a
standard 3D CNN encoder to extract features from input engineering sketches. A single
fully connected layer decodes extrusion parameters of a 2D distance field with heights.
Vis2Mesh [68] exploits depth completion for visibility prediction. They utilise three
modules with convolutional encoders and decoders. A renderer predicts depth maps,
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which are fed into the first module, CoarseVisNet, which predicts pixel visibility. Their
DepthCombNet module then receives the sparse depth map and provides a dense and
complete depth map. Their final module, FineVisNet, takes the depth maps from the
renderer and DepthCombNet as input to predict fine pixel visibility. Finally, in Search and
Evaluate [10], they utilise an architecture comprised by two U-Nets. One U-Net is deep
and is used for extracting global features of buildings. A shallow U-Net is incorporated to
provide pixel-wise classification scores based on predicted building edge accuracy.

3.1.3 Transformers

Transformer modules utilised in the pipelines analysed see varying levels of involvement.
The approaches [52] and [71] use attention mechanisms but not transformer modules. For
ALTO [52], the authors utilise an attention module to decode the latent space. The authors
of [71] approximate the reconstruction task as a composition of cropped chunks and utilise
a patch-attention module to only make use of useful features from their generated chunks.

The authors of [9,47,56] use transformers for different tasks in their pipelines. ShapeC-
lipper [47] finds its transformer element in its CLIP backbone, which generates encodings
for their image inputs. SparseFusion [56] utilises a feature transformer that is used
to predict the colours of novel views. HEAT [9] utilises transformers to incorporate
learned features onto edge nodes.

Techniques that utilise more transformer involvement are found in [50,54,73]. Authors
of AutoRecon [54] utilise a self-supervised ViT to combine features from images onto point
clouds. Through a 3D transformer, they can segment the point cloud into foreground and
background regions. In VolRecon [50], they use a view transformer and a ray transformer to
learn projection features and ray information. They utilise the ray information to compute
their SRDFs for all points along the rays computed. Authors of VolT [73] propose a 3D
Vision Transformer framework to make the most out of multi-view images. A 2D-view
transformer encoder is used to receive the 2D-view embeddings. With a 3D-volume
transformer decoder, they correlate different spatial locations in the global domain to
explore relationships between the spatial and view domains.
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3.1.4 Variational Autoencoders (VAE) and Vector Quantised - Variational
Autoencoders (VQ-VAE)

A limited amount of authors are seen to build their approaches as VAE-based generative
networks [38, 55]. The authors of SparseFusion [56] set their overall approach as a VAE to
generate plausible, accurate and realistic renderings. Xu et al. [55], on the other hand, set
their framework as a VAE such that they make use of the VAE’s continuous latent space to
allow to transform their binatorial problem of search and retrieval through a database into
a continuous optimisation problem. Cheng et al., with AutoSDF [45] and SDFusion [46],
make use of a VQ-VAE framework such that they take advantage of the discretised space
and alleviate the computational complexity of their DDM. Their approach allows for
decoding high-quality outputs whilst allowing for much easier computations.

3.1.5 Diffusion-Denoise Models (DDM)

DDMs are seen to be utilised in a broader fashion. The authors of LION [38], owing
to the VAE framework, can train two DDM models on hierarchical latent spaces which
combine a global latent representation with a point-structured latent space. Compared to
DDMs that operate directly on point clouds, they report better performance. Contrastingly,
SDFusion [46] employs DDMs in a VQ-VAE framework where the discredited space
allows for the reduction of the high-resolution 3D shapes and thus, the DDM can be
trained on latent representations.

Z. Zhou et al., with SparseFusion [56], extend the DDM concept, introducing the
Diffusion Distillation procedure. A diffusion model that works on computationally cheap
features extracted through a transformer to recover a latent representation of the ground
truth image and guide the reconstruction.

L. Melas-Kyriazi et al., with PC2, incorporate a gradual diffusion process where, at
each step, the image features gained through the encoder are projected into the partially
denoised point cloud and augmenting each point according to the feature sets. In their
follow-up approach [58], they utilise the open-source Stable Diffusion [77] as their DDM
of choice to generate diffusion priors, which make up for missing information when
reconstructing through Instant-NGP [78].
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3.1.6 Optimisation

Whilst not neural approaches, state-of-the-art comprises some non-data-driven approaches
[3,12,70]. Huang et al., [3] with City3D, provide an optimisation framework for generating
large building reconstructions. They combine footprint and point cloud data to extract
segments through the point cloud, and the building is extracted using its footprint. They
then extract polylines from a TIN height map and optimise extracted planes and polylines
to generate 3D models as meshes. The authors of GaussianFussion build upon the
well-known TSDF fusion reconstruction method [79]. They focus on fusing parameters
gained by different views, undertaking an algorithmic approach that exploits geodesic
curves between and Gaussian measurements. Through a simplex network, they optimise
the geodesic curves. N. Poliarnyi proposes the utilisation of the total generalised variation
minimisation (TGV) algorithm to generate large-scale scenes whilst delivering a GPU-
friendly approach. Using LiDAR data or depth maps, they construct octrees, which are
optimised through the TGV by building hierarchical treetops.

3.2 Data Input Modalities

It is shown that our stakeholder is primarily interested in utilising point clouds gained
from aerial images and converted through photogrammetry and vehicle LiDAR data. In
this section, the input modalities of the different techniques are analysed. Table 3.2 shows
a summary of the input modalities used by the literature. Section 3.2.1 shows literature
that utilises point cloud inputs. Section 3.2.2 shows techniques that can utilise a single
image to infer their reconstructions. In Section 3.2.3, approaches which utilise multi-view
images are demonstrated. Finally, in Section 3.2.4, the remaining modalities are seen.

3.2.1 Point Cloud Inputs

Approaches [3,4,12,38,45,46,49], directly receive and operate on point cloud data.AutoSDF
[45] splits the point cloud inputs into patches and encodes the patches independently.
NKSR [4], utilising oriented point cloud inputs, predicts a voxel hierarchy which enables
their technique. Optimisation-based [3] and [12] directly receive and operate on aerial
LiDAR data. X. Xu et al. designed their framework to receive a target shape as a point cloud.

The remaining techniques incorporating point clouds utilise backbones to extract latent
features from the input point clouds [52, 63, 66], [71]. Where approaches [52] and [66]
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Table 3.2: Input modalities used by the literature

Author Papers Input Modalities
Point Cloud Mesh Single Image Language Multiple Images Video RGB-D

LION [38] × - - - - - -
AutoSDF [45] × - - - - - -
SDFusion [46] × - × - - - -
ShapeClipper [47] - - × × - - -
SRDF [48] - - - - × - -
OG-INR [49] × - - - - - -
VolRecon [50] - - - - × - -
Neuralangelo [51] - - - - × - -
ALTO [52] × - - - - - -
BUOL [53] - - × - - - -
AutoRecon [54] - - - - × × -
Part Retrieval and
Assembly [55]

× × - - - - -

SparseFusion [56] - - - - × - -
Behind the Scenes
[57]

- - × - - - -

PC2 [39] - - × - - - -
RealFusion [58] - - × - - - -
PermutoSDF [59] - - - - × - -
NeuDA [60] - - - - × - -
SECAD-Net [61] - - × - - - -
ShadowNeuS [62] - - - - × - -
NKSR [4] × - - - - - -
City3D [3] × - - - - - -
POCO [63] × - - - - - -
HEAT [9] - - × - - - -
ManhattanSDF [64]
[59]

- - - - × - -

TARS [65] - - - - × - -
Predictable Context
Prior [66]

× - - - - - -

Direct Voxel Grid
Optimisation [67]

- - - - × - -

Out-of-Core [12] × - × - - - ×
Vis2Mesh [68] × - - - - - -
PSR [69] - - - - × - -
GaussianFussion
[70]

- - - - - - ×

Search and Evalu-
ate [10]

- - × - - - -

RetrievalFuse [71] × - - - - - -
Learning SDF for
Multiview Surface
Reconstruction [72]

- - - - × - -

VolT [73] - - - - × - -
3DIAS [74] - - × - - - -
MTBR-Net [11] - - × - - - -
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extract point features through PointNet. POCO [63] incorporate their convolutional
backbone in order to perform point cloud convolutions, and RetrievalFuse [71] utilises
a U-Net for feature extraction.

3.2.2 Single Image Inputs

Owing to their ResNet backbone [9, 47, 53, 57, 65, 74], they can receive a single image to
carry out their respective processes. HEAT [9] utilises this backbone to classify edges
within images. TARS [65], through its encoder, learns image features and enables their
neural representation approach. MTBR-Net [11], on the other hand, utilises its HR-Net
backbone so that it can perform its semantic tasks. Approaches [12] and [10] can also
receive satellite or aerial images, where [12] requires an additional dimension in depth.

The rest of the techniques utilising single images incorporate DDMs in their pipelines
[39, 46, 58]. PC2 [39] takes a single image and projects the image features on their noisy
point cloud as DDM conditioning. The second technique from these authors [58] utilises a
single image for a neural representation approach and makes up for the lack of multi-view
availability through their DDM component. Finally, SDFusion [46] carries a similar
approach where they learn latent features through DDMs to synthesise 3D shapes.

3.2.3 Multi-view Image Inputs

Approaches that require multi-view images can be conveniently classified into two
categories, neural representations and transformers. Neural representations [48, 51, 59,
60, 62, 67, 72], are first discussed. As seen, authors of [67] are directly inspired by NeRF
and follow their implementation, where this is true for NeuS with Neuralangelo [51],
PermutoSDF [59] NeuDA [60] and ShadowNeuS [62]. Authors of [48] are utilising the
multi-view images for their photo-consistency network.

The transformer-based approaches [50, 54, 56, 73] are also seen to utilise mutli-view
images. VolRecon [50] through its view transformer learns different view projection
features. SpraseFusion [56] transformer predicts colours in novel views. AutoRecon [54]
combines the features learned from the different views and decomposes them into a point
cloud representation. In addition, they can also utilise video inputs. VolT [73] approach is
based on refining the multi-view representations and then lifting them to 3D.
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3.2.4 Other Input Modalities

In this subsection, techniques incorporating unique modalities are discussed [12, 47, 55, 69,
70]. ShapeClipper [47] leveraging on its CLIP embeddings is the only approach seen that
can directly use language to infer 3D reconstructions. X. Xu et al. [55] utilise a library of
mesh-based shapes in order to learn the primitive shapes to carry out their reconstructions.
Optimisation techniques [12] and [70] can use RGB-D data. Finally, L. Jin et al. [69] utilise
a pair of images with their camera module.

3.3 Reconstruction modalities

Whilst our stakeholder is primarily interested in explicit representations, throughout this
section, it is shown that off-the-shelf modules can achieve such reconstructions. A summary
of reconstruction modalities employed by the literature is shown in Table 3.3. Mesh-based
reconstructions are shown in Section 3.3.1. Section 3.3.2 shows point-based reconstructions,
including point clouds and voxels. For convenience, implicit reconstruction modalities are
grouped together and shown in Section 3.3.3. In Section 3.3.4, approaches that provide
image reconstructions are demonstrated.

3.3.1 Mesh Reconstructions

The most commonly used reconstruction modality is meshes. Among the approaches
presented, it is particularly common to compute an implicit representation and then
extract meshes through marching cubes, such as [4, 12, 47, 49, 50, 52, 54, 56, 58, 63–66].
Out of the ordinary are POCO [63], which directly renders their occupancy scores, and
NKSR [4], which utilises dual marching cubes directly onto their kernel functions [80].
Other approaches [48] utilise the TSDF fusion method [79] to extract their meshes.

Depending on the representation, it is seen that there are other approaches for quick
mesh generation. X Xu et al. [55] utilise the hole-filling method to cover their generated
primitives with watertight meshes [81]. Authors of Vis2Mesh [68] utilise a graph-cut
based mesh generation [82] to reconstruct the mesh elements. In 3DIAS [74], they utilise
the mesh-fusion [83] technique to generate meshes from their 3D CAD models. In
GaussianFussion [70], the authors apply the screen poison surface mesh generation [84]
to generate meshes from their dense point clouds. As iterated and differing from the
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Table 3.3: Reconstruction modalities used by the literature, where abbreviations used are as follows:
Signed Distance Function (SDF), Signed Ray Distance Function (SRDF), Point Clouds (PC), Density
Field (DF), Radiance Field (RF).

Author Papers Reconstruction Modalities
Mesh Voxel SDF SRDF PC DF RF CAD Image

LION [38] × - - - - - - - -
AutoSDF [45] - - × - - - - - -
SDFusion [46] - - × - - - - - -
ShapeClipper [47] × - × - - - - - -
SRDF [48] × - - × - - - - -
OG-INR [49] × - × - - - - - -
VolRecon [50] × - - × × - - - -
Neuralangelo [51] - - × - - - - - -
ALTO [52] × - × - - - - - -
BUOL [53] - × - - - - - - -
AutoRecon [54] × - × - - - - - -
Part Retrieval and
Assembly [55]

× - - - - - - - -

SparseFusion [56] × - × - - - - - -
Behind the Scenes
[57]

- - - - - × - - -

PC2 [39] - - - - × - - - -
RealFusion [58] × - - - - - × - -
PermutoSDF [59] - - × - - - - - -
NeuDA [60] - - × - - - - - -
SECAD-Net [61] - - - - - - - × -
ShadowNeuS [62] - - × - - - - - -
NKSR [4] × - - - - - - - -
City3D [3] × - - - - - - - -
POCO [63] × - - - - - - - -
HEAT [9] - - - - - - - - ×
ManhattanSDF [64] × - × - - - - - -
TARS [65] × - × - - - - - -
Predictable Context
Prior [66]

× - × - - - - - -

Direct Voxel Grid
Optimisation [67]

- × - - - - × - -

Out-of-Core [12] × - × - - - - - -
Vis2Mesh [68] × - - - - - - - -
PSR [69] - - - - - - - - ×
GaussianFussion
[70]

× - - - × - - - -

Search and Evalu-
ate [10]

- - - - - - - - ×

RetrievalFuse [71] × - × - - - - - -
Learning SDF for
Multiview Surface
Reconstruction [72]

× - × - - - - - -

VolT [73] - × - - - - - - -
3DIAS [74] × - - - - - - × -
MTBR-Net [11] - - - - - - - × × 27
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rest, authors of City3D [3] optimise extracted planes and polylines extracted from their
TIN heightmap to generate their meshes.

3.3.2 Point-based Reconstructions

Point-based reconstructions can be categorised in voxels and point clouds. Starting with
voxelised outputs, both [53] and [73] directly output a voxelised output. In BUOL [53],
the 2D to 3D lifting technique is designed to output voxels, whereas in VolT [73], the
3D-volume transformer decoder generates a probabilistic voxel output. C. Sun et al. [67]
utilise a voxel grid representation in which modalities of interest, such as density and
colour, are stored in the grid cells. In regard to the point cloud-based approaches, [39]
and [70] are designed to directly output point clouds. The authors of VolRecon [50]
generate point clouds from their computed SRDFs using [85].

3.3.3 Implicit Reconstructions

The main implicit reconstruction technique used is SDFs. Many approaches directly
output SDFs through directly using MLPs with SDF loss functions [45–47,49,54,56,64–66].
Approaches [51,59,60,62] follow NeUS implementation for recovering their SDFs. Authors
of [52] and [12] follow different approaches for outputting their SDFs, where [52] authors
achieve that by utilising their attention module, and the authors of [12] have designed
the approach to operate directly on and output SDFs.

The remaining approaches output other types of implicit representations. Authors
of [48] and [50] utilise SRDFs as implicit representations, using the more efficient simulated
rays. The NeRF-inspired [58] and [67] output a radiance field as a representation, where [67]
makes smart use of the conveniently stored density and colour information in their grid
cells. Finally, [57] outputs a density field prediction.

3.3.4 Image Reconstructions

Whilst not 3D, some approaches are seen to output 2D imagery comprising useful
information that can be utilised for 3D reconstructions such as [9–11,69]. HEAT [9] and
Search and Evaluate [10] output 2D images with building footprints drawn on them. L. Jin
et al. [69] output pseudo-3D renderings of merged planes in their approach. Finally, the
authors of MTBR-Net [11] output 2D views of 3D geometries within the original images.
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3.4 Scene and Understanding Capabilities

Following our Affinity Diagram, our stakeholder is interested in large-scale reconstructions
and semantic understanding. In this section, the literature with such capabilities is
discussed in an attempt to identify how these capabilities are unlocked. In Table 3.4 a
summary of techniques with semantic or scene reconstruction capabilities is shown.

The literature comprising semantic or scene capabilities is seen in Table 3.4. Ap-
proaches [45–47] attempt to capture multi-modal semantic relationships by using language
embeddings. AutoSDF [45] combines ResNet with BERT to learn naive conditionals
and capture semantic relationships across image and language modalities. The same
authors with SDFusion [46] combine CLIP and BERT to achieve the same. The Authors
of ShapeClipper [47] have taken advantage of observation of similar 3D shapes having
similar CLIP embeddings where they improve global shape understanding by grouping
similar images together during training.

Other techniques find their semantic capabilities in their backbones [11,53,64]. Authors
of BUOL [53] combine a ResNet50 encoder with three decoders to allow 2D-rich prior
learning. Their occupancy-aware lifting block lifts the 2D priors into segmented 3D
features. In ManhattanSDF [64], they enhance the scene representation by incorporating
semantic logits through DeepLabv3+ [86]. These logits are transformed into probabilities
indicating surface types such as floors and walls. The authors of MTBR-Net [11] have
found their backbone in HR-Net, which allows them to perform their semantic tasks. In
addition, they utilise their roof/facade semantics to segment the footprints of buildings.

Approaches [4, 9, 10, 52, 74] all have in common that whilst they perform classification
or segmentation tasks, they fail to utilise any semantic capabilities. In ALTO [52], the
authors estimate that the rich features extracted from PointNet can also be utilised for
semantic tasks but have no proof yet. In NKSR [4], they only classify voxels depending
on their contribution to the scene. Approaches [9] and [10] utilise edge/corner detection
where [9] does so geometrically, and [10] relies on a footprint ground truth to learn
generic geometries of buildings.

In Table 3.4 it can also be seen that only three approaches combine scene reconstructions
with semantic capabilities [11, 53, 64]. Approaches [53] and [64] scene understanding
capabilities have been tested and proven in indoor scenes only. Contrastingly, [11]
addresses large-scale outdoor reconstructions.
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Table 3.4: Semantic and Scene Capabilities as seen by the literature

Author Papers Semantic Capabilities Scene Capabilities
MTBR-Net [11] Yes Yes
BUOL [53] Yes Yes
ManhattanSDF [64] Yes Yes
AutoSDF [45] Yes No
SDFusion [46] Yes No
ShapeClipper [47] Yes No
AutoRecon [54] Yes No
Neuralangelo [51] No Yes
ALTO [52] No Yes
Behind the Scenes
[57]

No Yes

NeuDA [60] No Yes
ShadowNeuS [62] No Yes
NKSR [4] No Yes
City3D [3] No Yes
POCO [63] No Yes
HEAT [9] No Yes
Predictable Context
[66]

No Yes

Direct Voxel Grid
Optimisation [67]

No Yes

Vis2Mesh [68] No Yes
PSR [69] No Yes
Search and Evalu-
ate [10]

No Yes

RetrievalFuse [71] No Yes
Learning SDF for
Multiview Surface
Reconstruction [72]

No Yes

In addition, variations in the scale of reconstructions are evident. Approaches [45–47,54]
whilst having semantic capabilities in that they can understand object classes, they are
limited to single object reconstructions. On the other hand, the rest of the approaches
do not possess any semantic capabilities but are able to perform scene reconstructions.
More specifically, [52, 60, 62, 63, 66, 67, 69, 72] are only addressing small scale scenes,
whereas [3, 4, 9, 10, 68] are able to tackle large scale scenes.

3.5 Human-in-the-loop

Guided by our Affinity Diagram, we are looking for methods in which the state-of-the-art
literature incorporates people within their approaches. It is evident that the literature
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attempting to incorporate people within their pipelines is very limited. Approaches [38,
45–47] use language text as their method of interactivity. All aforementioned approaches
incorporate language-only guided 3D generations, where [38] and [47] are able to texturise
their shapes via Text2Mesh [87]. In addition, [38] is able to provide interpolations between
shapes, whereas SDFusion [46] is also able to perform text-guided shape completion.

Two other methods of interactivity are seen. Neuralangelo [51], utilising commercial
software, can load the source point cloud and select the region of interest to be reconstructed.
Authors of [49] have taken a more algorithmic approach where a user can directly change
octree labels to guide or influence the reconstruction.

3.6 Critical Analysis

Through the analysis provided, it is seen that the most popular input modalities are multi-
view images with thirteen entries. As discussed, most methods operating on multi-view
images are neural representations and transformer-based techniques. It has been shown
that neural representations deal with multi-view images by learning a continuous field,
whereas transformers can learn multi-view features from these images.

Single images and point cloud inputs closely follow with twelve entries each. Ap-
proaches [9,11,69] can receive a single large-scale image and output building and footprint
information. Regarding point clouds, many approaches can directly receive and operate
on this modality. It was shown that single images are commonly used with techniques
that rely on their convolutional backbones to process them.

Meshes are the most commonly used reconstruction modality, followed by SDFs. Most
authors utilise off-the-shelf approaches to convert their modality of preference to meshes.
Only two approaches can directly output meshes. However, even these approaches
utilise off-the-shelf techniques to compute these meshes. Most approaches using implicit
representations as reconstruction modalities use marching cubes or TSDF-fusion to extract
meshes. For the techniques that utilise implicit representations but do not provide
meshes, it can be understood that whilst they can, the authors chose not to. Finally,
it is noteworthy that most approaches that incorporate marching cubes or other mesh
extraction techniques utilise explicit metrics such as Chamfer Distance or Intersection
over Union to assess their reconstruction qualities.

A pattern is identified regarding semantic and scene reconstruction capabilities, where
very few approaches can incorporate both. It can be quickly inferred that most neural
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representations that can output scene reconstructions do not incorporate semantic capabil-
ities. As discussed, most techniques that can incorporate semantic capabilities address
single-object reconstructions. Only three techniques incorporate semantic capabilities
with scene reconstruction, and only one is able to process large-scale outdoor scenes [11].
It should be noted, however, that their reconstructions are simple, lack details and only
can identify buildings.

Finally, the clear lack of Human-in-the-loop incorporation is evident. The approaches
that were demonstrated to incorporate language-based interaction cater to the Arts
Industry, and the shapes they produce do not reflect a physical shape captured from
sensors. One approach has shown region selection, which can be useful for addressing
scalability issues. Finally, one approach gives the ability to the user to influence the
reconstruction outcome by directly intervening in their octree-building process.
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Chapter 4

Materials and Method

Throughout this Chapter, the activities undertaken towards the development of this
dissertation are documented. These activities include stakeholder engagement activities in
the form of meetings and contextual inquiry, the creation of an Affinity Diagram based on
data gathered throughout the stakeholder engagement activities and a non-comprehensive
survey in 3D object reconstruction. In the remainder of this Chapter, Section 4.1 describes
the flow of events, and Section 4.2 describes the stakeholder engagement activities that
took place. In Section 4.3 the Affinity Diagram methodology is described. Finally, in
Section 4.4, we provide reasoning for our literature collection criteria and for the themes
guiding our survey analysis.

4.1 Overall Flow

The general flow of the project is described in Figure 4.1. As soon as the project began, the
literature search and analysis for the survey presented was initiated. Afterwards, three
stakeholder engagement activities were conducted between the academic and industrial
teams. Notes taken throughout these engagement activities were used to create an initial
set of labels that enabled the creation of an Affinity Diagram. The Affinity Diagram
has allowed for identifying key stakeholder requirements along with other areas of high
importance, termed Themes. The state-of-the-art literature collected was subsequently
re-analysed to align with the insights gained from the Affinity Diagram.
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Figure 4.1: Project Overall Flow

4.2 Stakeholder Engagement

The stakeholder engagement activities have taken place in two phases. The first phase
includes two online meetings between the industrial and academic teams. The second
phase was in the form of contextual inquiry, where the author of this dissertation travelled
to our stakeholder’s headquarters to first-hand experience current practices and delve
deeper into the initial requirements given. In Table 4.1, simple demographic information
of the stakeholder participants is shown.

Table 4.1: Stakeholder Participants Demographic Information

Participant Role Years of Experience

ST1 Chief Geospatial Scientist 8

ST2 Senior Innovation and Research Scientist N/A ~10+

ST3
Research Software Engineer

Senior Geospatial Scientist

7

3

As iterated, in the first phase, our stakeholder engagement activities took place in the
form of online meetings. In both meetings, a short presentation was conducted to set
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the scene for our stakeholders and provide useful information on preliminary findings.
This has allowed to maximise the efficiency of these meetings and ensure that we receive
appropriate guidance and feedback. Extreme care was taken regarding the delivery of
said presentations to not bias the participants. For the second meeting, key changes were
made to the presentation demonstrated to accommodate for new information extracted
from the previous meeting. The slides of both presentations can be seen in Appendix A.

For the second phase, the author of this dissertation has travelled to our stakeholder’s
headquarters. This contextual inquiry trip has served the purpose of directly observing
the organisation’s current practices regarding 3D products. In addition, it has aided
in gaining further context regarding how this product will be utilised, by whom and
the potential capabilities desired. Said capabilities ensure that the pipeline delivered by
upcoming research complies with our stakeholder’s vision and maximises our contributions
towards the said vision.

4.3 Affinity Diagram

The KJ method is closely followed where applicable to create an Affinity Diagram. Raw
notes, taken throughout the stakeholder engagement activities, have been first transcribed
into labelled statements. Each transcribed label represents a simplified version covering
the originating note’s essence. Only notes relevant to the scope of this research have been
transcribed, and repeating labels have been eliminated.

After several iterations of label grouping and adjusting, individual groups start to
form. Preliminary group titles are given to the groups formed when no apparent changes
can further be made to help contextualise the patterns starting to appear. Following
the nonlinearity of the process, the groups are continuously adjusted and decimated
when new grouping patterns are evident. Due to the iterative procedure of the process,
the whole grouping process cannot be described in detail, and many iterations are lost.
Core steps of the iterations towards the creation of the Affinity Diagram are described
in Chapter 5, along with grouping pattern analysis.

4.4 Literature Survey

Based on information collected before the initiation of this dissertation, the literature
collection criterion was to incorporate capabilities of 3D object or scene reconstructions.
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This criterion ensures that a broad scene of the latest advancements in 3D reconstruction
is captured without restricting the search to building or urban-specific reconstructions.
Such a restriction would prohibit the search and analysis from having multi-disciplinary
elements and hence prohibit a wider understanding of 3D product usages and limitations
of the techniques analysed towards our objectives.

Following the stakeholder engagement activities described and the creation of our
Affinity Diagram, a re-analysis of the literature ensued based on the Themes discovered.
This approach has allowed for a more focused interpretation of the literature assessed
and greatly enhanced the understanding gained from the state-of-the-art with respect
to our stakeholder’s needs.
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Chapter 5

Results

In this Chapter, the findings derived from our Affinity Diagram are discussed. In
Section 5.1, the construction and analysis of the Affinity Diagram are shown. In Section 5.2,
the literature assessed is mapped onto the Affinity Diagram where appropriate, aiming
to identify gaps with respect to our stakeholder’s needs.

5.1 Affinity Diagram

5.1.1 Construction of Affinity Diagram

Whilst the identified themes, subthemes and categories, and their relationships with
individual labels, are analysed in detail in this section, it is imperative to demonstrate
the defining steps undertaken to produce the Affinity Diagram. All steps to create the
Affinity Diagram were digitalised except the first step - label making, where the notes
representing relevant statements were extracted offline.

The first grouping iteration, i.e., the first iteration of the second step within the KJ
method, is shown in Figure 5.1. It is evident that some of the core themes that will lead
our survey are already formed. Group (a) indicates our stakeholders need to incorporate
semantic capabilities within the pipeline to be developed. Labels in group (b) are related
to how our stakeholders intend to incorporate human-centredness in this pipeline. Group
(c) refers to the need to identify how the Industry of 3D products operates and delivers
said products on a large scale. The fourth group identified, group (d), relates to guidance
and instructions on how the 3D products should be reconstructed. The final group, group
(e), relates to data availability and related challenges.
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Figure 5.1: First iteration of label grouping process towards the creation of the Affinity Diagram

Following the nonlinearity of the process, labels with extreme similarities are further
eliminated, label positioning is adjusted after careful consideration, and an attempt is
made to decimate the groups further to uncover relationships hidden in our dataset. In
Figure 5.2, the final iteration of the group-making process is seen, where preliminary
group titles are given to aid the researcher in contextualising the information when
moving to the chart-making step. Evidently, the preliminary groups identified earlier in
the process are further solidified. Other than label adjustments, it is seen that group (d)
from Figure 5.1 has been reduced into two groups. One group relates to our stakeholder’s
requirements regarding how the pipeline will be developed and implemented in their
current practices. The second group arising from this reduction explicitly relates to the
guidance and requirements of the 3D reconstructions themselves.
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Figure 5.2: Final iteration of label grouping process towards the creation of the Affinity Diagram
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Figure 5.3: First iteration of the chart-making process towards the creation of the Affinity Diagram
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Figure 5.3 shows a step in the chart-making process. In this preliminary stage, the main
themes and sub-themes that are apparent in the finalised Affinity Diagram are already
visible. Without accounting for individual label adjustments, the previously identified
Stakeholder Requirements group has taken a larger role in the Affinity Diagram and has
been identified as a theme comprised of three requirement-related sub-themes. Namely, the
sub-themes are Scene Understanding, Core, previously termed Stakeholder Requirements,
and Reconstruction. The remaining themes identified in the chart-making process are the
Industry Standards, Human-in-the-loop and Data Inputs and Outputs themes.

The fourth and final step of the KJ method is to provide a written explanation of
the resulting Affinity Diagram. In Figure 5.4, the finalised Affinity Diagram is seen,
where the themes previously identified remain unchanged. The themes and sub-themes
were further reduced wherever possible to make the so-called categories, and the cause
and effects are also shown. The hierarchy of the Affinity Diagram is dominated by
the themes, followed by sub-themes. Categories are third in the hierarchy and can be
incorporated directly into themes or sub-themes. Finally, the remaining labels can be
placed under any hierarchical rank.

The first theme explored is the Stakeholders Requirements theme, which is the
only theme comprising sub-themes. The sub-themes are the Scene Understanding,
Core and Reconstruction requirements. The Scene-Understanding sub-theme comprises
the Semantic Meaning and the Applications category. As indicated by the arrow, the
Applications category is enabled by the Semantic Meaning category, which comprises labels
relevant to the semantic scene and feature understanding requirements. This category
also includes labels on how autonomous vehicles can perform scene understanding in
real time and what fundamental information can be used when reconstructing 3D models
of buildings. The Applications category refers to applications the stakeholder intends to
utilise through the semantic semantic capabilities. Such applications include dynamic
classifications of objects based on levels of detail (LoDs), dealing with cluttered and noisy
datasets, and transient object identification and removal.

The second sub-theme under the Stakeholders Requirements theme is termed Core
requirements. This sub-theme includes three autonomous labels and the Functionalities
category. Said functionalities include incorporating varying levels of detail depending
on viewing distance, optional removal and re-addition of object classes without deletion
from the overall system and having a detailed terrain model. The first autonomous label
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Figure 5.4: Finalised Affinity Diagram

conveys the stakeholder’s interest in explicit representations over renderings. The second
autonomous core requirement is that the pipeline to be developed must have known and
measured limitations. The final autonomous label conveys the need to employ people
within the pipeline for quality assurance.

The third and final sub-theme related to our stakeholder’s requirements is termed
Reconstruction. The lone label in this sub-theme conveys the requirement of building
different object classes, such as buildings or vegetation, on top of a Bear Earth Model, which
is essentially a terrain model. The Pitfalls category comprises areas the stakeholder wants
to avoid delving into. The first identified pitfall is reconstructions based on Triangular
Irregular Networks (TINs) due to their subpar quality. The second pitfall the stakeholder
identified is that dealing with shadow detection and removal is very laborious and requires
a lot of effort. The second category in this sub-theme is termed 3D Surfaces. This is
related to the Geospatial community’s preference for explicit surfaces over implicit and
that the output must be watertight, manifold and bounded.
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The second theme analysed is the Data theme, which is concerned with data modalities
the stakeholder can provide to enable future research. A category termed Point Cloud has
been identified, comprising two labels. The first label relates to our stakeholder’s preference
for fusing photogrammetry-based point clouds with data derived from ground-based
LiDAR devices. The second label in this category relates to problems that arise when
dealing with these types of data. Such challenges include variations in noise, occlusions
and accuracies between the different point cloud data sources. The autonomous label in
this theme suggests a flexible approach from our stakeholders regarding providing data
in other formats, such as images and different environmental conditions.

The final two themes are Industry Standards and Human-in-the-loop. There are no
sub-themes or categories within these themes. The labels the Industry Standards theme is
comprised of essentially convey the need to research big competitor organisations that
have products in GIS 3D applications. The stakeholder has expressed the need to identify
the areas said competitors are focusing on. In addition, the strategies they undertake to
deliver scalable 3D products must be identified. The final autonomous label located in this
theme is the requirement to investigate if and how said competitors utilise 3D products
across different levels of detail. The Human-in-the-loop theme refers to the unavailability
of ground truth. Hence, there is a need to identify where people can engage within the
pipeline developed to accommodate for the lack of ground truth.

5.1.2 Affinity Diagram Analysis

Under the Scene Understanding theme, the Semantic Meaning sub-theme clearly indicates
the need of the stakeholder to leverage semantic relationships to maximise the capabilities
of the reconstruction software. In addition, there is a need for detailed classifications
to identify city furniture, city objects and other classes and differentiate them from
other classes perceived as noise or clutter, such as transient objects. Furthermore, as the
stakeholder is interested in a scalable and fast pipeline, there is a need to research how
autonomous vehicles execute scene understanding in real time. The final statement in this
sub-theme expresses the need to identify useful information that can be used to aid in the
generation of 3D buildings. Essentially, this statement is related to the types of semantic
or geometric information that can be leveraged to aid the generation of 3D buildings. The
Applications category in this sub-theme conveys how this semantic information can be
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employed within future research. These use cases include different class reconstructions
depending on the level of detail and clutter/transient object identification and removal.

The second sub-theme analysed is the Reconstruction sub-theme. As already men-
tioned, the Pitfalls category includes areas to be avoided as instructed by the stakeholder.
TINs are avoided as they only provide a single height parameter per square distance,
which can greatly limit the quality of the reconstructions. The second category of this
sub-theme, the 3D Surfaces, states requirements regarding the stakeholder’s preference of
employing explicit modalities for the reconstructions, where the main modality of interest
is meshes, which must be watertight, manifold and fully bounded. It is shown that the
3D Surfaces category is directly related to the Core sub-theme in that explicit outputs
essentially translate into avoidance of rendering. In addition, the surfaces generated must
be able to adjust their intersection vertices to be bounded on top of a Bear Earth Model.
The autonomous label in this sub-theme is also related to the Core functionalities in that
the surfaces built must be controllable by class selection.

Almost all of the themes and sub-themes identified point towards the Core require-
ments sub-theme. The Functionalities category conveys additional functionalities to
reconstruction that the stakeholder wishes to incorporate within the future pipeline. A
relation is noticed between the Functionalities and Applications categories. It is established
that the user must be able to interact with different levels of detail depending on the
distance viewed, where different classes are shown depending on said viewing distance.
In addition, the fact that the dataset is noisy and contains significant amounts of clutter
might indicate that this noise must be classified and distinguished from clutter. This
conclusion is also supported by the lone label under the Reconstruction sub-theme, where
some classes, like building installations, whilst considered clutter, might prove to be useful
information for many industries. Such a strategy would need to incorporate a Bear Earth
Model as a base surface, where different verified classes must be able to be optionally built
on top of it. Combined with the insights gained from the Scene Understanding sub-theme,
it is evident how the semantic capabilities enable multi-class reconstructions. Finally, the
autonomous label in the core sub-theme regarding the stakeholder’s preference for 3D
representations is seen to convey the same message with 3D Surfaces.

The Data theme, as described, is largely related to the point cloud inputs from different
sources and the challenges accompanying this type of data. The relationship between
this theme and the Human-in-the-loop theme has been identified as the unavailability
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of ground truth. Photogrammetry-based point clouds contain artefacts due to shadows,
lighting conditions or lack of redundancy between source images. In comparison, the
LiDAR data contain different inaccuracies relating to GIS loss and moving objects. Hence,
an expert must be incorporated to ensure that the model quality remains high, possibly
through interactive guidance. The autonomous label relates to the collection of new
data under different conditions, which further establishes that shadow removal would
indeed be a pitfall.

Finally, the Industry Standards theme is associated with the identification of both
state-of-the-art and commercial 3D Geospatial products, where the specifics have been
discussed in Section 5.1.1. Not shown on the Affinity Diagram due to spatial restrictions
is that this theme can have a large effect on the 3D surface reconstruction strategy to
be undertaken by future work.

5.2 Survey Mapping on Affinity Diagram

We combine the findings from the Affinity Diagram and the survey. To do so, where
applicable, the relevant literature mentioned in the survey presented is mapped onto
the Affinity Diagram, as seen in Figure Fig. 5.5. Whilst through the survey, the trends
and gaps of the state-of-the-art in regards to our themes have been found and analysed,
this mapping allows for a much more holistic analysis.

The Scene Understanding sub-theme under Stakeholder Requirements is first con-
sidered. In the Semantic Meaning category, only three techniques have been identified
as being capable of scene reconstruction with semantic understanding, of which two are
capable of recognising multi-class features. As discussed, four authors were identified to
utilise building information for their reconstructions. However, as shown, the resulting
qualities are inferior to the reconstructions we are aiming for. No techniques showcased
semantic capabilities in conjunction with 3D reconstructions in real-time.

In the Applications category, two major gaps are identified. No techniques focus on tran-
sient object detection and removal. Whilst some techniques have the capability of handling
large amounts of noise and sparseness, no approaches tackle clutter specifically. The second
major gap is the lack of employing different classifications for different levels of detail.

With respect to the Core sub-theme, major gaps in the literature are again identified.
In the Functionalities category, it is seen that only one approach has shown capabilities
of providing different levels of detail. However, the detail of their reconstructions
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Figure 5.5: Literature mapped to the relevant labels, N/A means that the statement is irrelevant
to our search, None indicates that no literature addresses that label, showing gaps between our
stakeholder needs and the literature surveyed, ++ indicates that there is vast literature addressing
that label.

solely depends on their data, and their approaches are not used in conjunction. The
lack of semantic capable reconstructions is also reflected in the requirement of optional
class handling. In addition, no techniques were found which were concerned with
the reconstruction of a terrain model. In regard to our stakeholder’s requirement of
focusing on 3D representations, it is seen that most approaches provide quantifiable
explicit methods of reconstruction in their methods. A great limitation is found in that
most approaches do not incorporate any human intervention in their techniques, where
only one author was seen to accomplish this.

In the Reconstruction sub-theme, we have found that the Pitfalls instructed by our
stakeholder are indeed avoided by the recent literature. Where no authors are utilising
TINs as their final reconstruction or focusing on shadow removal. Most interestingly, an
approach was found that leveraged the presence of shadows to aid their reconstructions.
In regard to the 3D Surfaces, it was shown that the most common reconstruction modality
is meshes. Moreover, it was shown that meshes are almost always generated from an
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off-the-shelf technique, such as marching cubes and variants. In addition, whilst only four
approaches directly report watertight, bounded or manifold surfaces, it can be inferred
that this is the outcome for most.

Moving to the data theme, we identify that no approach utilises multi-sourced point
clouds. Thus, no methods for integration of multi-sourced point clouds were identified
either. However, our stakeholder is able to provide data under different conditions in both
point cloud and image formats, which are the main input modalities used by the literature.

It is obvious that the survey presented is not appropriate for appropriate exploration of
the Industry Standards theme. The funding of different approaches was investigated, but
when mentioned, it is either academic or governmental. Exceptions are two approaches
funded by NVIDIA. Regarding off-the-shelf models, several techniques are utilising
pre-trained and well-known backbones to enable their approaches.

Finally, we have found an important gap in terms of the Human-in-the-loop theme.
Only one approach was found to use interactivity to supervise their reconstruction quality.
However, three approaches were seen to identify building geometries and footprints,
which is a promising approach to overcome the limitations with ground truth data.
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Chapter 6

Discussion

The methodology of the Affinity Diagram based qualitative analysis approach was
demonstrated through the iterative process shown in Figures 5.1 and 5.2. Accounting for
the group reductions that were performed, the bottom-up methodology of the Affinity
Diagram was not strictly adhered to. However, this was expected due to the non-rational
and nonlinear elements that constitute the Affinity Diagrams. Through this Affinity
Diagram, key areas of analysis for the literature survey are presented. Following this
analysis, the literature analysed was visualised on our Affinity Diagram in order to get a
more holistic picture of how recent literature compares to our stakeholder’s needs.

With respect to the Scene Understanding sub-theme, a critical limitation is identified in
that very few approaches incorporate both scene reconstruction and semantic capabilities.
Out of these three approaches that are able to carry out these tasks simultaneously, two
incorporate multi-class capabilities but are restricted to small-scale indoor scenes. The
other approach is able to output large-scale outdoor scenes, but they can only use semantic
tasks to identify and reconstruct buildings. In addition to the building-related semantic
tasks, other approaches were seen to utilise building-specific geometric information to
identify and reconstruct the footprints of buildings. It can be inferred that the state-
of-the-art cannot yet tackle the considerably increased complexity of identifying and
reconstructing multi-class objects on such a large scale.

In the Applications category, gaps are identified in the lack of scene classification
depending on levels of detail and in the identification and removal of transient objects,
where no techniques are seen to address either task. In addition, whilst some approaches
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mention that they can address noisy and sparse datasets, no approach addresses clutter
explicitly, as it is a more complex problem.

The limitations already discussed are also reflected in the Core sub-theme. One
approach was seen to be able to provide different LoDs, however, as already explained,
their reconstructions are not synchronised. With the identified limited semantic capabilities
within reconstruction approaches, it was found that optional class handling is also a big
gap. In addition, it can be understood that city semantic classification and class handling
is a large field with a different focus than 3D reconstruction. Literature specialising in that
task promises to show much more capable semantic understanding. Furthermore, the
lack of terrain model generation might also indicate the need for a specialised technique.

Different results are seen with the Reconstruction sub-subtheme. The pitfalls our
stakeholder instructed us to avoid have not been seen in any of the literature. With respect
to the nature of the reconstructions, it is shown that most approaches employing implicit
representations are also capable of extracting explicit modalities. In addition, whilst
only four approaches explicitly report watertight, manifold and bounded surfaces, it is
understood that marching cubes and related techniques are also capable of producing such
surfaces. Whilst our stakeholder has shown a disinterest in implicit methods, it is seen
that they dominate the state-of-the-art. By utilising the off-the-shelf meshing techniques,
many authors extract meshes which are quantifiable and measurable modalities.

In the Data theme, it is identified that the point fusion of LiDAR data is not something
preferred by the 3D reconstruction community as no approaches utilise multi-modal data
inputs. Thus, the challenges relating to the integration of multi-sourced point clouds have
not been addressed either. That being said, it is seen that healthy amounts of literature
utilise both point cloud and image data inputs. In fact, neural representations, which
are a very popular 3D reconstruction approach, are seen to prefer multi-view image
inputs. It would be particularly interesting to investigate the combination of image and
point cloud modalities fusion.

It is identified that the Industry Standards theme is not really relevant to the survey
presented, as we are focusing on academic literature. Approaches referencing funded
research often cite academic institutions or government sources. Exceptions are [4, 51],
which is work funded by NVIDIA. In this theme, it is also identified that there are
multiple techniques relying on backbones to guide their reconstructions. As already
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stated, there is a need to explore how to utilise a semantic classifier and potentially be
the backbone of the reconstruction pipeline.

It has been demonstrated in Chapter 3 that human-in-the-loop incorporation is very
rare in the literature. The approaches shown incorporating text guidance did not involve
any interactivity in the sense that the user can guide the software to deliver more accurate
reconstructions. Only one approach was seen to be able to better their reconstructions
through human involvement, which is further proof that the state-of-the-art concentrates
on technical matters and neglects human-in-the-loop initiatives. However, the approach
is limited as they are directly augmenting octree structures. Regarding ground truth
limitations, some approaches were seen to be able to provide footprints of printings.
Whilst not involving people, they give the possibility of alleviating problems with ground
truth for guiding the building reconstructions.
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Chapter 7

Limitations and Future Work

As expected, the themes identified and used to guide the undertaken analysis are multi-
faceted and cover a broad range of fields. To this extent, it is difficult to cover in detail all
these aspects within the short period of time allocated for this research project. Furthermore,
the literature on this topic is vast, and it is impossible to cover it extensively. That said, the
literature analysed can be considered a good representation of the state-of-the-art and
will shape future research. In addition, the literature survey will be repeated in a more
comprehensive manner and with the scope modified to address large-scale urban scenes.

Owing to the iterative procedure of the categorisation of the Affinity Diagram, some
labels may not accurately represent the statements that our stakeholders intended. Whilst
non-rationality is in the nature of the Affinity Diagrams, there is a need to verify the
findings of this dissertation with our stakeholders to ensure that the objective of future
research is correctly characterised. In addition, due to the rules of this dissertation, the
Affinity Diagram was carried out only by the author. For future work, this process is to be
repeated with the contribution of other researchers to effectively carry out the method.
Finally, more qualitative data are to be gathered by our stakeholder.

A significant limitation was also found in technical implementation. Computer
graphics is a very hardware-demanding area, and state-of-the-art techniques can be very
computationally expensive and extremely difficult to use. Whilst an attempt has been
made to implement some of the techniques analysed to assess their practical utilities
and performance, the lack of appropriate hardware has greatly obstructed this goal.
This limitation is expected to be alleviated early in future research. A standardised
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7. Limitations and Future Work

workflow will be developed using Docker, which will enable the execution and evaluation
of multiple techniques with consistency.

In addition to 3D reconstructions, two major areas for future research were identified:
semantic scene understanding and Human-in-the-loop. In our upcoming research, we
plan to focus on identifying how to enable semantic scene understanding. The literature
surveyed has shown very limited capabilities in comparison with what our stakeholder is
aiming for. It has been recognised that a suitable semantic backbone must be designed to
support our reconstruction pipeline. Whilst many approaches are seen to utilise strong
convolutional backbones, we believe that a task-specific semantic backbone can robustly
support the reconstruction pipeline.

In terms of 3D reconstruction, neural representations are seen to be very popular among
the literature analysed. Several approaches are able to achieve high-quality and detailed
reconstructions. Many techniques not directly incorporating neural representations are
seen to also utilise implicit representations. For our research, it would be interesting to
attempt to learn multi-view features from the point clouds in order to compute neural
representations to extract meshes. A possible architecture to accomplish this might
include a generative model supported by the semantic backbone, which learns novel
denoised projections of the original points. Approaches have shown that points cloud
projections can be represented as occupancy fields and hence extract meshes through
marching cubes-based methods.

Finally, it was shown that a large gap in Human-in-the-loop approaches is evident.
Similar to the semantic understanding conclusions, this area needs to be investigated in
depth to identify how people could be integrated effectively to enhance the pipeline. The
combined gaps in semantic and human-in-the-loop capabilities might suggest that an
approach that combines both could lead to achieving multi-class reconstructions, which
are the ultimate target of our stakeholder.
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Chapter 8

Conclusions

The transformation of two-dimensional maps to 3D offers to support many upcoming
technologies such as smart cities, digital twins and autonomous vehicles. However, data
derived from real sensors are unavoidably noisy and susceptible to the environmental
conditions in which these data have been collected. The 3D reconstruction literature is
seen to focus on producing faithful reconstructions, but these techniques are seen to be
sensitive to thin structures, noise and shadows.

Qualitative data derived from stakeholder engagement activities have been organised
using affinity diagramming to identify our stakeholder’s needs. The needs identified
formed the themes that guided our literature survey. The themes identified relate to our
stakeholder’s technical requirements, data availability and obstacles that are associated
with these modalities, industry standards of 3D map reconstruction and human-in-the-
loop initiative. Finally, to solidify the strengths and gaps identified, the literature analysed
is mapped onto the Affinity Diagram.

Three main areas for future contribution have been identified. The 3D reconstruc-
tions themselves, semantic understanding and scene reconstruction capabilities, and
human-in-the-loop.
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Appendix A

Supplementary Data

A.0.1 Presentation 1

Scalable AI-Assisted 3D City Model Reconstruction from Multiple Sourced Systems

Supervision team:

Dr Gary K.L Tam

Dr Sean Walton

Dr Nicholas Micallef

Student:

Andreas Christodoulides

MSc Progress Presentation
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A. Supplementary Data

MSc Research Component and Goals

• MSc research Submission: End of September

• MSc research goals:

❖ Deep understanding of State-of-the-Art (SOTA) literature

➢ Identify trends and gaps

❖ Deep understanding of OS’s needs and requirements

❖ Implementation of at least one suitable SOTA approach and start human-in-the-

loop approach to gather insights

MSc work so far: Literature preliminary insights

• Signed Distance Functions (SDF) are the most popular rendering approach

• Strengths:

• Low computational requirements compared to other rendering techniques (e.g., NeRF)

• Can be easily combined with other techniques (e.g., SDF-NeRF, SDF-NV)

• Weaknesses

• High computational costs when rendering multiple objects/large scenes at high resolutions

• Struggles with occlusion removal when employed by itself

• Gaps in the literature so far:

• High focus in literature on enhancing digital arts or knowledge progression on general object 

reconstruction – a specialised technique promises better results and robustness

• Very little literature is focused on how to fuse different modalities (examples found: sRGB with 

metadata, multi-view images with camera poses)

• Literature is primarily interested in single object reconstruction instead of scene
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MSc work so far: Best performing SOTA techniques

LION: Latent Point Diffusion Model [NeurIPS2022]

High quality reconstructions:

Can be combined with text-driven shape generation, or texture stylising methods (i.e., Text2Mesh)

Shape Interpolation capabilities:

Possible interactive methods (borrowed from literature)

Example 1: SDFusion text guided texturing [CVPR2023]

Example 2: SDFusion Conditional generation, partial shape with text guidance
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A. Supplementary Data

Possible interactive methods (borrowed from literature)

Example 3: SDFusion Multiple conditioning variables with adjustable weight control

Possible interactive methods (borrowed from literature)

Example 4: Neuralangelo Interactive selection of region of interest from point cloud [CVPR2023]
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Areas which may benefit OS

Physics informed Neural Networks (PINNs)

• Building defect detection

• Smart city foundation

Material detection through ray tracing

•  Leverage on simulated light 

interactions

Understanding of OS’s needs and requirements

• Human-in-the-loop, Scalability, Data Fusion… What else?

• Further extend needs and requirements through:

❖Management consultation

❖ User centred studies involving OS’s experts (possibly interviews)

➢ Who are the experts we need to contact for interviews and what are 

their roles? (different roles and backgrounds will be primarily 

concerned with different aspects, need to account for variability in 

expertise in the studies)

➢ Need understanding of the manual process from start to finish (data 

types, intermediate inputs/outputs, finalised representation)
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A. Supplementary Data

Scalable AI-Assisted 3D City Model Reconstruction from Multiple Sourced Systems

MSc Progress Presentation

Thank you for your attention!
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A.0.2 Presentation 2

Scalable AI-Assisted 3D City Model Reconstruction from Multiple Sourced Systems

Supervision team:

Dr Gary K.L Tam

Dr Sean Walton

Dr Nicholas Micallef

Student:

Andreas Christodoulides

MSc Progress Presentation
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A. Supplementary Data

MSc Research Component (Fast Track)

• MSc research Submission: End of September

• MSc research goals:

❖ Deep understanding of State-of-the-Art (SOTA) literature

➢ Identify trends and gaps

❖ Deep understanding of OS’s needs and requirements

❖ Implementation of at least one suitable SOTA approach and start using human-in-

the-loop approaches to gather insights

PhD Research Component (Slow Track)

• PhD Duration: September 2023 – September 2026

• PhD research plan (Year 1):

❖ Further extend literature review → Literature Survey

➢ Objects of interest: Noisy point cloud processing, 3D scene understanding, 3D 

reconstruction (explicit surface output)

❖ Implementation of several suitable SOTA techniques (Qualitative and Quantitative 

analysis of techniques)

❖ Co-evolutionary approach: Work packages of shorter durations that explore OS’s 

needs

➢ Regular meetings with OS team to shape research undertaken
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Semantics of Geospatial Information

How can semantic information be included in 3D datasets? (Borrowed from Kelvin’s PhD Dissertation)

• Building Installations (Used inside buildings with external components e.g., AC units)

• City Furniture (e.g., street lamps, benches)

• Generic City Object (e.g., monuments, fences)

• Door (entry and exit points of buildings)

• Ground Surface (ground level terrain)

• Land Use (e.g., residential, industrial, etc.)

• Plant Cover (e.g., trees, parks)

• Relief Feature (elevation)

• Road Types

• Roof Surface (Roof types)

• Wall Surface (External walls of buildings)

• Water Body 

• Water Surface

• Window

Semantics of Geospatial Information

How can semantic information be included in 3D datasets? (Borrowed from Kelvin’s PhD Dissertation)

• Building Installations (Used inside buildings with external components e.g., AC units)

• City Furniture (e.g., street lamps, benches)

• Generic City Object (e.g., monuments, fences)

• Door (entry and exit points of buildings)

• Ground Surface (ground level terrain)

• Land Use (e.g., residential, industrial, etc.)

• Plant Cover (e.g., trees, parks)

• Relief Feature (elevation)

• Road Types

• Roof Surface (Roof types)

• Wall Surface (External walls of buildings)

• Water Body 

• Water Surface

• Window
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A. Supplementary Data

Explicit Surface Representation example: PolyFit[ICCV2017]

PolyFit procedure:

PolyFit: Examples

MSc work so far: Best performing SOTA technique

LION: Latent Point Diffusion Model [NeurIPS2022]
High quality reconstructions:

Can be combined with text-driven shape generation, or texture stylising methods (i.e., Text2Mesh)

Shape Interpolation capabilities:
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Possible interactive methods (borrowed from literature)

Example 1: SDFusion text guided texturing [CVPR2023]

Example 2: SDFusion Conditional generation, partial shape with text guidance

Possible interactive methods (borrowed from literature)

Example 3: SDFusion Multiple conditioning variables with adjustable weight control
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A. Supplementary Data

Possible interactive methods (borrowed from literature)

Example 4: Neuralangelo Interactive selection of region of interest from point cloud [CVPR2023]

Possible interactive methods (borrowed from literature)

Example 4: Neuralangelo Interactive selection of region of interest from point cloud [CVPR2023]
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Scalable AI-Assisted 3D City Model Reconstruction from Multiple Sourced Systems

MSc Progress Presentation

Thank you for your attention!
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