Incubation environment affects phenotype of naturally incubated green turtle hatchlings

F. Glen*, A.C. Broderick, B.J. Godley and G.C. Hays
School of Biological Sciences, University of Wales, Swansea, Swansea, SA2 8PP.
*Corresponding author, e-mail: fglen1@hotmail.com

A comparison of body size and flipper size was carried out on green turtle (Chelonia mydas) hatchlings produced from natural nests at two beaches on Ascension Island, South Atlantic and one beach in northern Cyprus (N=18 nests; N=180 hatchlings). Hatchlings from Ascension Island were significantly larger and heavier than hatchlings in Cyprus, a likely consequence of maternal size effects. Incubation temperature appeared to influence body size of hatchlings on Ascension Island with higher temperatures producing smaller hatchlings. Both hind and fore-flipper area scaled positively with body size. In proportion to body size, hind-flipper area appears relatively consistent among the Atlantic populations but is smaller than hatchlings measured in Hawaii.

INTRODUCTION

Marine turtles are ideal organisms in which to study intraspecific variation in phenotype. As a result of their wide distribution, and the fact that both males and females usually return to their natal coastline to breed, many discrete populations are found nesting at different locations (e.g. Bowen et al., 1989). Indeed, morphological studies on green turtles (Chelonia mydas) have shown variations in traits among regional populations, for example; variation in skull morphology (Kamezaki & Matsui, 1995), flipper size (Balazs et al., 1997; Wyneken et al., 1999) and body size (Carr & Goodman, 1970; Figueroa & Alvarado, 1990).

It has been suggested that in the eastern Pacific, Chelonia mydas constitutes two separate species; the black turtle (Chelonia agassizi) distinguished from the green turtle by its grey plastron, higher carapace, small size and a darker dorsal pigmentation (Pritchard, 1999). Comparison of the skull structure of green turtle populations lent support to this distinction (Kamezaki & Matsui, 1995; Pritchard, 1999), although DNA analysis has not revealed a unique lineage relative to other green turtle populations (Bowen & Karl, 1999).

A major problem in defining turtle populations using morphological traits is the presence of epigenetic effects. Hatchling phenotype, as well as being controlled by factors such as genetics and maternal effects such as egg size (e.g. Van Buskirk & Crowder, 1994; Hewaviththi & Parmenter, 2001), is also determined by the incubation environment. Nest temperature and the hydric condition influence the metabolic rate of the embryo, and therefore control the length of incubation (see Miller, 1996 for review). Consequently, even though variation in hatchling morphology can be observed between and within populations, this is due to a combination of effects. Analyses of the contribution of parental influence or environment towards hatchling phenotype in marine turtles is as yet poorly understood, indeed in most reptiles, elucidation of the proportion of phenotypic variation generated by temperature variation within and between nests is still a major problem (Shine, 1999).

The aim of this study was to describe the variation in hatchling morphology from nests incubated naturally under differing regimes. By comparing two different populations, i.e. Ascension Island, South Atlantic Ocean and northern Cyprus, eastern Mediterranean, we aimed to investigate the following: (1) do green hatchlings from the Atlantic have a different morphology to those in the Mediterranean; and (2) what effect does incubation regime have on phenotypic variation?

MATERIALS AND METHODS

Study sites
Data were collected on North East Bay and Long Beach, Ascension Island, South Atlantic (7°57’S 14°22’W), and Alagadi Beach (35°33’N 33°47’E), northern Cyprus, eastern Mediterranean.

Temperature logging and hatchling collection
Six clutches laid by different females on each beach were randomly selected. A temperature data logger (Tinytalk, Orion Components Ltd, Chichester, UK; precision of 0.3°C) was placed into the middle of the clutch during oviposition. Temperature loggers which had been previously calibrated (Hays et al., 1999), were set to record synchronously at hourly intervals. Following egg deposition, the curved carapace length (CCL) of the adult female was measured from the anterior of the precentral scute to the posterior of the postcentral scute and therefore control the length of incubation (see Miller, 1996 for review). Consequently, even though variation in hatchling morphology can be observed between and within populations, this is due to a combination of effects. Analyses of the contribution of parental influence or environment towards hatchling phenotype in marine turtles is as yet poorly understood, indeed in most reptiles, elucidation of the proportion of phenotypic variation generated by temperature variation within and between nests is still a major problem (Shine, 1999).

The aim of this study was to describe the variation in hatchling morphology from nests incubated naturally under differing regimes. By comparing two different populations, i.e. Ascension Island, South Atlantic Ocean and northern Cyprus, eastern Mediterranean, we aimed to investigate the following: (1) do green hatchlings from the Atlantic have a different morphology to those in the Mediterranean; and (2) what effect does incubation regime have on phenotypic variation?

MATERIALS AND METHODS

Study sites
Data were collected on North East Bay and Long Beach, Ascension Island, South Atlantic (7°57’S 14°22’W), and Alagadi Beach (35°33’N 33°47’E), northern Cyprus, eastern Mediterranean.

Temperature logging and hatchling collection
Six clutches laid by different females on each beach were randomly selected. A temperature data logger (Tinytalk, Orion Components Ltd, Chichester, UK; precision of 0.3°C) was placed into the middle of the clutch during oviposition. Temperature loggers which had been previously calibrated (Hays et al., 1999), were set to record synchronously at hourly intervals. Following egg deposition, the curved carapace length (CCL) of the adult female was measured from the anterior of the precentral scute to the posterior of the postcentral scute and therefore control the length of incubation (see Miller, 1996 for review). Consequently, even though variation in hatchling morphology can be observed between and within populations, this is due to a combination of effects. Analyses of the contribution of parental influence or environment towards hatchling phenotype in marine turtles is as yet poorly understood, indeed in most reptiles, elucidation of the proportion of phenotypic variation generated by temperature variation within and between nests is still a major problem (Shine, 1999).

The aim of this study was to describe the variation in hatchling morphology from nests incubated naturally under differing regimes. By comparing two different populations, i.e. Ascension Island, South Atlantic Ocean and northern Cyprus, eastern Mediterranean, we aimed to investigate the following: (1) do green hatchlings from the Atlantic have a different morphology to those in the Mediterranean; and (2) what effect does incubation regime have on phenotypic variation?

MATERIALS AND METHODS

Study sites
Data were collected on North East Bay and Long Beach, Ascension Island, South Atlantic (7°57’S 14°22’W), and Alagadi Beach (35°33’N 33°47’E), northern Cyprus, eastern Mediterranean.

Temperature logging and hatchling collection
Six clutches laid by different females on each beach were randomly selected. A temperature data logger (Tinytalk, Orion Components Ltd, Chichester, UK; precision of 0.3°C) was placed into the middle of the clutch during oviposition. Temperature loggers which had been previously calibrated (Hays et al., 1999), were set to record synchronously at hourly intervals. Following egg deposition, the curved carapace length (CCL) of the adult female was measured from the anterior of the precentral scute to the posterior of the postcentral scute and therefore control the length of incubation (see Miller, 1996 for review). Consequently, even though variation in hatchling morphology can be observed between and within populations, this is due to a combination of effects. Analyses of the contribution of parental influence or environment towards hatchling phenotype in marine turtles is as yet poorly understood, indeed in most reptiles, elucidation of the proportion of phenotypic variation generated by temperature variation within and between nests is still a major problem (Shine, 1999).

The aim of this study was to describe the variation in hatchling morphology from nests incubated naturally under differing regimes. By comparing two different populations, i.e. Ascension Island, South Atlantic Ocean and northern Cyprus, eastern Mediterranean, we aimed to investigate the following: (1) do green hatchlings from the Atlantic have a different morphology to those in the Mediterranean; and (2) what effect does incubation regime have on phenotypic variation?

MATERIALS AND METHODS

Study sites
Data were collected on North East Bay and Long Beach, Ascension Island, South Atlantic (7°57’S 14°22’W), and Alagadi Beach (35°33’N 33°47’E), northern Cyprus, eastern Mediterranean.

Temperature logging and hatchling collection
Six clutches laid by different females on each beach were randomly selected. A temperature data logger (Tinytalk, Orion Components Ltd, Chichester, UK; precision of 0.3°C) was placed into the middle of the clutch during oviposition. Temperature loggers which had been previously calibrated (Hays et al., 1999), were set to record synchronously at hourly intervals. Following egg deposition, the curved carapace length (CCL) of the adult female was measured from the anterior of the precentral scute to the posterior of the postcentral scute and therefore control the length of incubation (see Miller, 1996 for review). Consequently, even though variation in hatchling morphology can be observed between and within populations, this is due to a combination of effects. Analyses of the contribution of parental influence or environment towards hatchling phenotype in marine turtles is as yet poorly understood, indeed in most reptiles, elucidation of the proportion of phenotypic variation generated by temperature variation within and between nests is still a major problem (Shine, 1999).

The aim of this study was to describe the variation in hatchling morphology from nests incubated naturally under differing regimes. By comparing two different populations, i.e. Ascension Island, South Atlantic Ocean and northern Cyprus, eastern Mediterranean, we aimed to investigate the following: (1) do green hatchlings from the Atlantic have a different morphology to those in the Mediterranean; and (2) what effect does incubation regime have on phenotypic variation?
hatchlings emerging during the heat of the day were able to move freely. Nests were checked throughout the night. Upon emergence of hatchlings, measurements were taken and the hatchlings were released. Nests were excavated 48 hours after the last observed emergence of hatchlings, the temperature data loggers were retrieved and data offloaded. Analyses of temperature data were confined to recordings taken from 24 h after egg deposition until 24 h prior to the first recorded emergence. Incubation period of the nests was determined as the number of days between the night on which the clutch was laid and the night on which the first group of hatchlings emerged.

Hatchling measurements

Ten individuals were chosen randomly from each clutch and 11 measurements were taken (see Figure 1) using dial callipers accurate to 0.1 mm (CAMLAB, Cambridge, UK). Hatchling weight was taken using electronic scales accurate to the nearest 0.1g (Ohaus, LS200, Ohaus Europe Ltd, Cottenham, Cambridge). Using the flipper measurements, the area of the fore flipper (FFA) and hind flipper (HFA) were calculated for each hatchling using basic geometry (see Figure 1). Average values were obtained from each nest, thus we had six measures of body length, body weight, fore and hind flipper area for each beach. These mean values were used in subsequent data analysis.

In order to verify the calliper measurements, we randomly chose 20 dead hatchlings from our study nests on Ascension Island and subjected them to the same measurements as live hatchlings. In addition, flippers were excised and using image analysis software (Image-Pro Plus Version 4.1, Media Cybernetics, Maryland 20910, USA) the flippers were scanned using a video camera (JVC Colour Video Camera Head, TK-1270, Victor Company of Japan Ltd). A paired t-test established that there was no significant difference between the areas calculated using the measurements taken by hand and those calculated by image analysis (FFA: $t_{1,19} = 1.30, P > 0.05$, HFA: $t_{1,19} = 1.04, P > 0.05$).

Egg measurements

In order to determine how egg size varied among the three sites, a random selection of nests (N=23 nests) from each of the three beaches were chosen. Once clutch deposition was complete, the curved carapace length of the adult female was measured and ten eggs randomly selected and measured. Maximum diameter of the eggs was measured using callipers accurate to 0.1 mm. Hatchlings from these nests were not measured. In order to prevent altering the natural regime of these nests, we chose not to measure the eggs from nests where temperature was recorded.

RESULTS

Analysis of variance (ANOVA) revealed a significant difference in adult CCL among the study sites (Table 1), where turtles nesting on Alagadi were significantly smaller than turtles from both sites at Ascension Island ($F_{2,22} = 36.51, P < 0.001$, post hoc Tukey test). Mean egg size was significantly smaller at Alagadi than at Long
Table 1. Synopsis of nest, adult and hatchling parameters. Figures in parentheses indicate the range of values.

<table>
<thead>
<tr>
<th></th>
<th>Alagadi Mean±SD</th>
<th>Long Beach Mean±SD</th>
<th>North East Bay Mean±SD</th>
</tr>
</thead>
</table>

Adults

Curved Carapace Length (cm) (N=7) (109.3–122.5) (112.0–128.0)
Carapace Diameter (mm) (N=7 nests) (44.1–46.5) (45.1–47.7)
Egg Diameter (mm) (N=7 nests) (37.7–42.6) (44.1–46.5)

Nests

Mean Incubation Duration (days) (N=6 nests) (45.1–46.5) (50.0–53.0)
Temperature (°C) (N=6 nests) (37.7–42.6) (31.3–32.5)

Hatchlings

Fore flipper area (mm²) (N=6 nests) (309.1–361.6) (373.2–410.3)
Hind flipper area (mm²) (N=6 nests) (255.2–288.7) (286.7–335.1)

Beach and North East Bay (ANOVA, F₂,22=60.06, P<0.001, post hoc Tukey test).

Hatchlings from Long Beach were longer (F₂,22=8.33, P<0.005, post hoc Tukey test), heavier (F₂,22=19.42, P<0.001, post hoc Tukey test) and had larger fore (F₂,22=29.73, P<0.001, post hoc Tukey test) and hind flippers (F₂,22=22.88, P<0.001, post hoc Tukey test) than hatchlings from North East Bay, which in turn were larger than hatchlings from Alagadi (Table 1).

Incubation temperature

A significant difference in incubation temperatures between the three sites was found with North East Bay nests being warmer than those on Alagadi, which in turn were warmer than on Long Beach (ANOVA F₂,17=21.58, P<0.001, post hoc Tukey test).

Flipper size

As hatchling length increased, so did fore and hind flipper area on all three beaches (Figure 2). A previous comparison of the relationship between HFA and straight carapace length (SCL) in green turtle hatchlings from Atlantic (Florida) and Pacific (Hawaii) populations was carried out using different but comparable measuring techniques (Wyneken et al., 1999). In the Wyneken et al. (1999) study, green turtle hatchlings were held and an outline of their flippers were traced. The planar surface area of each of these tracings was measured using a digital scanning programme, and the area was calculated. This technique calculated a mean standard error for the HFA area of 318 mm² ±25 mm in Florida hatchlings and 415 mm² ±25 mm in hatchlings from the Pacific. Using the average SCL measurement of hatchlings from Florida and Hawaii we calculated, using our regression equation (HFA = −227 + 40.4 SCL, F₁,17=37.14, P<0.001, r²=0.68). Values of HFA for Alagadi beach were lower than those for Long Beach and North East Bay (ANOVA, F₂,22=22.88, P<0.001, post hoc Tukey test).

As hatchling length increased, so did fore and hind flipper area on all three beaches (Figure 2). A previous comparison of the relationship between HFA and straight carapace length (SCL) in green turtle hatchlings from Atlantic (Florida) and Pacific (Hawaii) populations was carried out using different but comparable measuring
In conclusion, this study has shown that the range of nest temperatures experienced under natural conditions may contribute to the generation of meaningful levels of phenotypic variation in green turtle hatchlings.

We thank all the members of the Marine Turtle Conservation Project 2000, the Department of Environmental Protection and the Society for the Protection of Turtles in northern Cyprus. The study was also supported by grants from the Department of the Transport and Regions (DETR), Darwin Initiative Programme for the Survival of the Species and the Foreign and Commonwealth Office Environment Fund for the Overseas Territories. Thank you to Matthew Godfrey for his comments on an early draft of this manuscript. B.G. is supported by a NERC Fellowship.

REFERENCES

In conclusion, this study has shown that the range of nest temperatures experienced under natural conditions may contribute to the generation of meaningful levels of phenotypic variation in green turtle hatchlings.

We thank all the members of the Marine Turtle Conservation Project 2000, the Department of Environmental Protection and the Society for the Protection of Turtles in northern Cyprus. The study was also supported by grants from the Department of the Transport and Regions (DETR), Darwin Initiative Programme for the Survival of the Species and the Foreign and Commonwealth Office Environment Fund for the Overseas Territories. Thank you to Matthew Godfrey for his comments on an early draft of this manuscript. B.G. is supported by a NERC Fellowship.

REFERENCES

