Publications

Journal Articles

  1. et. al. Antihydrogen accumulation for fundamental symmetry tests. Nature Communications 8(1)
  2. & Aspects of 1S-2S spectroscopy of trapped antihydrogen atoms. Journal of Physics B: Atomic, Molecular and Optical Physics 50(18), 184002
  3. et. al. Observation of the hyperfine spectrum of antihydrogen. Nature 548(7665), 66-69.
  4. et. al. Observation of the 1S–2S transition in trapped antihydrogen. Nature 541, 566-510.
  5. Antihydrogen studies in ALPHA. Journal of Physics: Conference Series 770, 012021
  6. et. al. An improved limit on the charge of antihydrogen from stochastic acceleration. Nature 529(7586), 373-376.
  7. et. al. Antiproton cloud compression in the ALPHA apparatus at CERN. Hyperfine Interactions, 1-8.
  8. & Physics with antihydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics 48(23), 232001
  9. & Antihydrogen trapping assisted by sympathetically cooled positrons. New Journal of Physics 16(6), 063046
  10. et. al. An experimental limit on the charge of antihydrogen. Nature Communications 5, 3955
  11. ALPHA: antihydrogen and fundamental physics. Hyperfine Interactions
  12. The ALPHA antihydrogen trapping apparatus. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 735, 319-340.
  13. In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap. New Journal of Physics 16(1), 013037
  14. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus. Review of Scientific Instruments 84(6)
  15. Silicon vertex detector upgrade in the ALPHA experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 732, 134-136.
  16. Trapped antihydrogen: A new frontier in fundamental physics. Journal of Physics: Conference Series 443, 012005
  17. et. al. Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Communications 4
  18. Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production. Physics of Plasmas 20(4)
  19. & Antihydrogen in a bottle. Physics Education 48(2)-220.
  20. Microwave-plasma interactions studied via mode diagnostics in ALPHA. Hyperfine Interactions 212(1-3)-123.
  21. Alternative method for reconstruction of antihydrogen annihilation vertices. Hyperfine Interactions 212(1-3)-107.
  22. Antihydrogen detection in ALPHA. Hyperfine Interactions 212(1-3)-99.
  23. Progress towards microwave spectroscopy of trapped antihydrogen. Hyperfine Interactions 212(1-3)-90.
  24. Antihydrogen formation by autoresonant excitation of antiproton plasmas. Hyperfine Interactions 212(1-3)-67.
  25. Trapped antihydrogen. Hyperfine Interactions 212(1-3)-29.
  26. Antihydrogen annihilation reconstruction with the ALPHA silicon detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 684, 73-81.
  27. Resonant quantum transitions in trapped antihydrogen atoms. Nature 483(7390), 439-443.
  28. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap. New Journal of Physics 14(1)
  29. The ALPHA – detector: Module Production and Assembly. Journal of Instrumentation 7(01)-C01051.
  30. Towards antihydrogen trapping and spectroscopy at ALPHA. Hyperfine Interactions 199(1-3)-48.
  31. Confinement of antihydrogen for 1,000 seconds. Nature Physics
  32. Centrifugal Separation and Equilibration Dynamics in an Electron-Antiproton Plasma. Physical Review Letters 106(14)
  33. Autoresonant Excitation of Antiproton Plasmas. Physical Review Letters 106(2), 025002
  34. Search for trapped antihydrogen. Physics Letters B
  35. Antiparticle sources for antihydrogen production and trapping. Journal of Physics: Conference Series 262
  36. Search for trapped antihydrogen in ALPHA. Canadian Journal of Physics
  37. Towards antihydrogen trapping and spectroscopy at ALPHA. Hyperfine Interactions 199(1-3)-48.
  38. Antiparticle sources for antihydrogen production and trapping. Journal of Physics: Conference Series 262, 012001
  39. et. al. Trapped antihydrogen. Nature 468(7324), 673-676.
  40. Antimatter transport processes. Journal of Physics: Conference Series 257
  41. et. al. Evaporative Cooling of Antiprotons to Cryogenic Temperatures. Physical Review Letters 105(1), 013003
  42. Cold antihydrogen: a new frontier in fundamental physics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1924)-3682.
  43. Antihydrogen formation dynamics in a multipolar neutral anti-atom trap. Physics Letters B 685(2-3)-145.
  44. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector. Review of Scientific Instruments 80(12)
  45. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning–Malmberg trap used for antihydrogen trapping. Physics of Plasmas 16(10)
  46. Antihydrogen Physics at ALPHA/CERNThis paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at University of Windsor, Windsor, Ontario, Canada on 21–26 July 2008.. Canadian Journal of Physics 87(7), 791-797.
  47. Temporally Controlled Modulation of Antihydrogen Production and the Temperature Scaling of Antiproton-Positron Recombination. Physical Review Letters 101(5)
  48. et. al. Compression of Antiproton Clouds for Antihydrogen Trapping. Physical Review Letters 100(20), 203401
  49. & Critical loss radius in a Penning trap subject to multipole fields. Physics of Plasmas 15(3)
  50. A novel antiproton radial diagnostic based on octupole induced ballistic loss. Physics of Plasmas 15(3)
  51. Towards trapped antihydrogen. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266(3)-362.
  52. & Antihydrogen for precision tests in physics. Contemporary Physics 49(1)-41.
  53. et. al. Production of antihydrogen at reduced magnetic field for anti-atom trapping. Journal of Physics B: Atomic, Molecular and Optical Physics 41(1), 011001
  54. Search for Laser-Induced Formation of Antihydrogen Atoms. Physical Review Letters 97(21), 4 pages
  55. Spatial Distribution of Cold Antihydrogen Formation. Physical Review Letters 94(3), 4 pages
  56. Three-Dimensional Annihilation Imaging of Trapped Antiprotons. Physical Review Letters 92(6), 4 pages
  57. Antihydrogen production temperature dependence. Physics Letters B 583(1-2), 59-67.
  58. Production and detection of cold antihydrogen atoms. Nature 419(6906), 456-459.

Books

  1. & (Eds.). Trapped Charged Particles - A Graduate Textbook with Problems and Solutions. World Scientific.
  2. & (Eds.). Physics with Trapped Charged Particles. Martina Knoop (CNRS, France & Université d'Aix-Marseille, France), Niels Madsen (Swansea University, UK), Richard C Thompson (Imperial College London, UK) (Ed.), London: Imperial College Press.

Book Chapters

  1. ANTIHYDROGEN PHYSICS. In Trapped Charged Particles. -298). World Scientific.
  2. Antimatter Pushing Boundaries. In Beatrice Bressan (Ed.), From Physics to Daily Life: Applications in Informatics, Energy, and Environment. (pp. 159-169). Wiley.
  3. & Chapter 1: Physics with Trapped Charged Particles. In Martina Knoop, Niels Madsen, and Richard C Thompson (Ed.), Physics with Trapped Charged Particles. -24). London: Imperial College Press.
  4. Chapter 8: Antihydrogen Formation and Trapping. In Martina Knoop, Niels Madsen, and Richard C Thompson (Ed.), Physics with Trapped Charged Particles. -238). London: Imperial College Press.

Conference Contributions

  1. (2013). Evaporative cooling of antiprotons for the production of trappable antihydrogen. Presented at AIP Conference Proceedings,, 165-174. doi:10.1063/1.4796072
  2. (2013). Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen. Presented at AIP Conference Proceedings,(1), 123-133. doi:10.1063/1.4796068
  3. (2013). Microwave-plasma interactions studied via mode diagnostics in ALPHA. Presented at LEAP 2011,, 117-123. Vancouver: Springer. doi:10.1007/978-94-007-5530-7_13
  4. (2013). Alternative method for reconstruction of antihydrogen annihilation vertices. Presented at LEAP 2011,, 101-107. Vancouver: Springer. doi:10.1007/978-94-007-5530-7_11
  5. (2013). Antihydrogen detection in ALPHA. Presented at LEAP 2011,, 91-99. Vancouver: doi:10.1007/978-94-007-5530-7_10
  6. (2013). Progress towards microwave spectroscopy of trapped antihydrogen. Presented at LEAP 2011,, 81-90. Vancouver: Springer. doi:10.1007/978-94-007-5530-7_9
  7. (2013). Antihydrogen formation by autoresonant excitation of antiproton plasmas. Presented at LEAP 2011,, 61-67. Vancouver: Springer. doi:10.1007/978-94-007-5530-7_7
  8. (2013). Trapped antihydrogen. Presented at LEAP 2011,, 15-29. Vancouver: Springer. doi:10.1007/978-94-007-5530-7_3
  9. (2012). Antiparticle plasmas for antihydrogen trapping. Presented at AIP Conference Proceedings,-16. doi:10.1063/1.4707848
  10. (2011). ALPHA ANTIHYDROGEN EXPERIMENT. Presented at CPT AND Lorentz Symmetry.,, 50-54.World Scientific Publishing Co.. doi:10.1142/9789814327688_0011
  11. (2008). Antiproton compression and radial measurements. Presented at AIP Conference Proceedings,-105. Okinawa (Japan): doi:10.1063/1.2977860
  12. (2008). First Attempts at Antihydrogen Trapping in ALPHA. Presented at AIP Conference Proceedings,-248. Okinawa (Japan): doi:10.1063/1.2977843
  13. (2008). Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN. -220. doi:10.1063/1.2977840
  14. (2008). THE ALPHA ANTIHYDROGEN EXPERIMENT. Presented at CPT AND LORENTZ SYMMETRY. Proceedings of the Fourth Meeting,-149. Bloomington (USA): doi:10.1142/9789812779519_0021