Spectral stability of solitary waves in the nonlinear
Dirac equation in the nonrelativistic limit

Nabile Boussaïd
Université Bourgogne – Franche-Comté, Besançon, France

Andrew Comech
IITP, Moscow, Russia and Texas A&M University, College Station, Texas, USA

We consider the nonlinear Dirac equation in \mathbb{R}^n, $n \geq 1$, with the scalar self-interaction, known as the Soler model [Iva38, Sol70]:

$$i\partial_t \psi = D_m \psi - f(\psi^* \beta \psi) \beta \psi, \quad \psi(x,t) \in \mathbb{C}^N, \ x \in \mathbb{R}^n,$$

where the Dirac operator is $D_m = -i\alpha \cdot \nabla + \beta m$, $m > 0$, with the self-adjoint $N \times N$ Dirac matrices $\alpha = (\alpha^j)_{1 \leq j \leq n}$ and β chosen so that $D_m^2 = -\Delta + m^2$. The nonlinearity is represented by a real-valued function $f \in C^1(\mathbb{R}\{0\})$ such that $f(\tau) = |\tau|^k + O(|\tau|^K)$ for $\tau \to 0$, with $0 < k < K$.

We study the point spectrum of the linearization at a solitary wave solution $\phi_\omega(x)e^{-i\omega t}$, focusing on the spectral stability, that is, the absence of eigenvalues with nonzero real part. For $n = 1$ and $n \geq 3$, we prove the spectral stability of solitary waves in the nonrelativistic limit $\omega \lesssim m$ for the charge-subcritical cases $k \lesssim 2/n$ and for the “charge-critical case” $k = 2/n$ (if $K > 4/n$). For technical reasons, we can not consider the values $k \gtrsim 0$, and we only have partial results in the dimension $n = 2$.

An important part of the stability analysis is the proof of the absence of bifurcations of nonzero-real-part eigenvalues from the embedded threshold points at $\pm 2mi$. Our approach is based on constructing a new family of exact bi-frequency solitary wave solutions $\phi_\omega(x)e^{-i\omega t} + \chi_\omega(x)e^{i\omega t}$ in the Soler model, on using this family to determine the multiplicity of $\pm 2\omega i$ eigenvalues of the linearized operator, and on the analysis of the behaviour of “nonlinear eigenvalues”: characteristic roots of holomorphic operator-valued functions [Kel51].

The talk is based on the articles [BC16, BC17a] and the preprint [BC17b].

References